Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * This file is subject to the terms and conditions of the GNU General Public
0003  * License.  See the file "COPYING" in the main directory of this archive
0004  * for more details.
0005  *
0006  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
0007  * Copyright (C) 1995, 1996 Paul M. Antoine
0008  * Copyright (C) 1998 Ulf Carlsson
0009  * Copyright (C) 1999 Silicon Graphics, Inc.
0010  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
0011  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
0012  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
0013  * Copyright (C) 2014, Imagination Technologies Ltd.
0014  */
0015 #include <linux/bitops.h>
0016 #include <linux/bug.h>
0017 #include <linux/compiler.h>
0018 #include <linux/context_tracking.h>
0019 #include <linux/cpu_pm.h>
0020 #include <linux/kexec.h>
0021 #include <linux/init.h>
0022 #include <linux/kernel.h>
0023 #include <linux/module.h>
0024 #include <linux/extable.h>
0025 #include <linux/mm.h>
0026 #include <linux/sched/mm.h>
0027 #include <linux/sched/debug.h>
0028 #include <linux/smp.h>
0029 #include <linux/spinlock.h>
0030 #include <linux/kallsyms.h>
0031 #include <linux/memblock.h>
0032 #include <linux/interrupt.h>
0033 #include <linux/ptrace.h>
0034 #include <linux/kgdb.h>
0035 #include <linux/kdebug.h>
0036 #include <linux/kprobes.h>
0037 #include <linux/notifier.h>
0038 #include <linux/kdb.h>
0039 #include <linux/irq.h>
0040 #include <linux/perf_event.h>
0041 
0042 #include <asm/addrspace.h>
0043 #include <asm/bootinfo.h>
0044 #include <asm/branch.h>
0045 #include <asm/break.h>
0046 #include <asm/cop2.h>
0047 #include <asm/cpu.h>
0048 #include <asm/cpu-type.h>
0049 #include <asm/dsp.h>
0050 #include <asm/fpu.h>
0051 #include <asm/fpu_emulator.h>
0052 #include <asm/idle.h>
0053 #include <asm/isa-rev.h>
0054 #include <asm/mips-cps.h>
0055 #include <asm/mips-r2-to-r6-emul.h>
0056 #include <asm/mipsregs.h>
0057 #include <asm/mipsmtregs.h>
0058 #include <asm/module.h>
0059 #include <asm/msa.h>
0060 #include <asm/ptrace.h>
0061 #include <asm/sections.h>
0062 #include <asm/siginfo.h>
0063 #include <asm/tlbdebug.h>
0064 #include <asm/traps.h>
0065 #include <linux/uaccess.h>
0066 #include <asm/watch.h>
0067 #include <asm/mmu_context.h>
0068 #include <asm/types.h>
0069 #include <asm/stacktrace.h>
0070 #include <asm/tlbex.h>
0071 #include <asm/uasm.h>
0072 
0073 #include <asm/mach-loongson64/cpucfg-emul.h>
0074 
0075 #include "access-helper.h"
0076 
0077 extern void check_wait(void);
0078 extern asmlinkage void rollback_handle_int(void);
0079 extern asmlinkage void handle_int(void);
0080 extern asmlinkage void handle_adel(void);
0081 extern asmlinkage void handle_ades(void);
0082 extern asmlinkage void handle_ibe(void);
0083 extern asmlinkage void handle_dbe(void);
0084 extern asmlinkage void handle_sys(void);
0085 extern asmlinkage void handle_bp(void);
0086 extern asmlinkage void handle_ri(void);
0087 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
0088 extern asmlinkage void handle_ri_rdhwr(void);
0089 extern asmlinkage void handle_cpu(void);
0090 extern asmlinkage void handle_ov(void);
0091 extern asmlinkage void handle_tr(void);
0092 extern asmlinkage void handle_msa_fpe(void);
0093 extern asmlinkage void handle_fpe(void);
0094 extern asmlinkage void handle_ftlb(void);
0095 extern asmlinkage void handle_gsexc(void);
0096 extern asmlinkage void handle_msa(void);
0097 extern asmlinkage void handle_mdmx(void);
0098 extern asmlinkage void handle_watch(void);
0099 extern asmlinkage void handle_mt(void);
0100 extern asmlinkage void handle_dsp(void);
0101 extern asmlinkage void handle_mcheck(void);
0102 extern asmlinkage void handle_reserved(void);
0103 extern void tlb_do_page_fault_0(void);
0104 
0105 void (*board_be_init)(void);
0106 static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
0107 void (*board_nmi_handler_setup)(void);
0108 void (*board_ejtag_handler_setup)(void);
0109 void (*board_bind_eic_interrupt)(int irq, int regset);
0110 void (*board_ebase_setup)(void);
0111 void(*board_cache_error_setup)(void);
0112 
0113 void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
0114 {
0115     board_be_handler = handler;
0116 }
0117 EXPORT_SYMBOL_GPL(mips_set_be_handler);
0118 
0119 static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
0120                    bool user)
0121 {
0122     unsigned long *sp = (unsigned long *)(reg29 & ~3);
0123     unsigned long addr;
0124 
0125     printk("%sCall Trace:", loglvl);
0126 #ifdef CONFIG_KALLSYMS
0127     printk("%s\n", loglvl);
0128 #endif
0129     while (!kstack_end(sp)) {
0130         if (__get_addr(&addr, sp++, user)) {
0131             printk("%s (Bad stack address)", loglvl);
0132             break;
0133         }
0134         if (__kernel_text_address(addr))
0135             print_ip_sym(loglvl, addr);
0136     }
0137     printk("%s\n", loglvl);
0138 }
0139 
0140 #ifdef CONFIG_KALLSYMS
0141 int raw_show_trace;
0142 static int __init set_raw_show_trace(char *str)
0143 {
0144     raw_show_trace = 1;
0145     return 1;
0146 }
0147 __setup("raw_show_trace", set_raw_show_trace);
0148 #endif
0149 
0150 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
0151                const char *loglvl, bool user)
0152 {
0153     unsigned long sp = regs->regs[29];
0154     unsigned long ra = regs->regs[31];
0155     unsigned long pc = regs->cp0_epc;
0156 
0157     if (!task)
0158         task = current;
0159 
0160     if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
0161         show_raw_backtrace(sp, loglvl, user);
0162         return;
0163     }
0164     printk("%sCall Trace:\n", loglvl);
0165     do {
0166         print_ip_sym(loglvl, pc);
0167         pc = unwind_stack(task, &sp, pc, &ra);
0168     } while (pc);
0169     pr_cont("\n");
0170 }
0171 
0172 /*
0173  * This routine abuses get_user()/put_user() to reference pointers
0174  * with at least a bit of error checking ...
0175  */
0176 static void show_stacktrace(struct task_struct *task,
0177     const struct pt_regs *regs, const char *loglvl, bool user)
0178 {
0179     const int field = 2 * sizeof(unsigned long);
0180     unsigned long stackdata;
0181     int i;
0182     unsigned long *sp = (unsigned long *)regs->regs[29];
0183 
0184     printk("%sStack :", loglvl);
0185     i = 0;
0186     while ((unsigned long) sp & (PAGE_SIZE - 1)) {
0187         if (i && ((i % (64 / field)) == 0)) {
0188             pr_cont("\n");
0189             printk("%s       ", loglvl);
0190         }
0191         if (i > 39) {
0192             pr_cont(" ...");
0193             break;
0194         }
0195 
0196         if (__get_addr(&stackdata, sp++, user)) {
0197             pr_cont(" (Bad stack address)");
0198             break;
0199         }
0200 
0201         pr_cont(" %0*lx", field, stackdata);
0202         i++;
0203     }
0204     pr_cont("\n");
0205     show_backtrace(task, regs, loglvl, user);
0206 }
0207 
0208 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
0209 {
0210     struct pt_regs regs;
0211 
0212     regs.cp0_status = KSU_KERNEL;
0213     if (sp) {
0214         regs.regs[29] = (unsigned long)sp;
0215         regs.regs[31] = 0;
0216         regs.cp0_epc = 0;
0217     } else {
0218         if (task && task != current) {
0219             regs.regs[29] = task->thread.reg29;
0220             regs.regs[31] = 0;
0221             regs.cp0_epc = task->thread.reg31;
0222         } else {
0223             prepare_frametrace(&regs);
0224         }
0225     }
0226     show_stacktrace(task, &regs, loglvl, false);
0227 }
0228 
0229 static void show_code(void *pc, bool user)
0230 {
0231     long i;
0232     unsigned short *pc16 = NULL;
0233 
0234     printk("Code:");
0235 
0236     if ((unsigned long)pc & 1)
0237         pc16 = (u16 *)((unsigned long)pc & ~1);
0238 
0239     for(i = -3 ; i < 6 ; i++) {
0240         if (pc16) {
0241             u16 insn16;
0242 
0243             if (__get_inst16(&insn16, pc16 + i, user))
0244                 goto bad_address;
0245 
0246             pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
0247         } else {
0248             u32 insn32;
0249 
0250             if (__get_inst32(&insn32, (u32 *)pc + i, user))
0251                 goto bad_address;
0252 
0253             pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
0254         }
0255     }
0256     pr_cont("\n");
0257     return;
0258 
0259 bad_address:
0260     pr_cont(" (Bad address in epc)\n\n");
0261 }
0262 
0263 static void __show_regs(const struct pt_regs *regs)
0264 {
0265     const int field = 2 * sizeof(unsigned long);
0266     unsigned int cause = regs->cp0_cause;
0267     unsigned int exccode;
0268     int i;
0269 
0270     show_regs_print_info(KERN_DEFAULT);
0271 
0272     /*
0273      * Saved main processor registers
0274      */
0275     for (i = 0; i < 32; ) {
0276         if ((i % 4) == 0)
0277             printk("$%2d   :", i);
0278         if (i == 0)
0279             pr_cont(" %0*lx", field, 0UL);
0280         else if (i == 26 || i == 27)
0281             pr_cont(" %*s", field, "");
0282         else
0283             pr_cont(" %0*lx", field, regs->regs[i]);
0284 
0285         i++;
0286         if ((i % 4) == 0)
0287             pr_cont("\n");
0288     }
0289 
0290 #ifdef CONFIG_CPU_HAS_SMARTMIPS
0291     printk("Acx    : %0*lx\n", field, regs->acx);
0292 #endif
0293     if (MIPS_ISA_REV < 6) {
0294         printk("Hi    : %0*lx\n", field, regs->hi);
0295         printk("Lo    : %0*lx\n", field, regs->lo);
0296     }
0297 
0298     /*
0299      * Saved cp0 registers
0300      */
0301     printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
0302            (void *) regs->cp0_epc);
0303     printk("ra    : %0*lx %pS\n", field, regs->regs[31],
0304            (void *) regs->regs[31]);
0305 
0306     printk("Status: %08x    ", (uint32_t) regs->cp0_status);
0307 
0308     if (cpu_has_3kex) {
0309         if (regs->cp0_status & ST0_KUO)
0310             pr_cont("KUo ");
0311         if (regs->cp0_status & ST0_IEO)
0312             pr_cont("IEo ");
0313         if (regs->cp0_status & ST0_KUP)
0314             pr_cont("KUp ");
0315         if (regs->cp0_status & ST0_IEP)
0316             pr_cont("IEp ");
0317         if (regs->cp0_status & ST0_KUC)
0318             pr_cont("KUc ");
0319         if (regs->cp0_status & ST0_IEC)
0320             pr_cont("IEc ");
0321     } else if (cpu_has_4kex) {
0322         if (regs->cp0_status & ST0_KX)
0323             pr_cont("KX ");
0324         if (regs->cp0_status & ST0_SX)
0325             pr_cont("SX ");
0326         if (regs->cp0_status & ST0_UX)
0327             pr_cont("UX ");
0328         switch (regs->cp0_status & ST0_KSU) {
0329         case KSU_USER:
0330             pr_cont("USER ");
0331             break;
0332         case KSU_SUPERVISOR:
0333             pr_cont("SUPERVISOR ");
0334             break;
0335         case KSU_KERNEL:
0336             pr_cont("KERNEL ");
0337             break;
0338         default:
0339             pr_cont("BAD_MODE ");
0340             break;
0341         }
0342         if (regs->cp0_status & ST0_ERL)
0343             pr_cont("ERL ");
0344         if (regs->cp0_status & ST0_EXL)
0345             pr_cont("EXL ");
0346         if (regs->cp0_status & ST0_IE)
0347             pr_cont("IE ");
0348     }
0349     pr_cont("\n");
0350 
0351     exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
0352     printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
0353 
0354     if (1 <= exccode && exccode <= 5)
0355         printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
0356 
0357     printk("PrId  : %08x (%s)\n", read_c0_prid(),
0358            cpu_name_string());
0359 }
0360 
0361 /*
0362  * FIXME: really the generic show_regs should take a const pointer argument.
0363  */
0364 void show_regs(struct pt_regs *regs)
0365 {
0366     __show_regs(regs);
0367     dump_stack();
0368 }
0369 
0370 void show_registers(struct pt_regs *regs)
0371 {
0372     const int field = 2 * sizeof(unsigned long);
0373 
0374     __show_regs(regs);
0375     print_modules();
0376     printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
0377            current->comm, current->pid, current_thread_info(), current,
0378           field, current_thread_info()->tp_value);
0379     if (cpu_has_userlocal) {
0380         unsigned long tls;
0381 
0382         tls = read_c0_userlocal();
0383         if (tls != current_thread_info()->tp_value)
0384             printk("*HwTLS: %0*lx\n", field, tls);
0385     }
0386 
0387     show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
0388     show_code((void *)regs->cp0_epc, user_mode(regs));
0389     printk("\n");
0390 }
0391 
0392 static DEFINE_RAW_SPINLOCK(die_lock);
0393 
0394 void __noreturn die(const char *str, struct pt_regs *regs)
0395 {
0396     static int die_counter;
0397     int sig = SIGSEGV;
0398 
0399     oops_enter();
0400 
0401     if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
0402                SIGSEGV) == NOTIFY_STOP)
0403         sig = 0;
0404 
0405     console_verbose();
0406     raw_spin_lock_irq(&die_lock);
0407     bust_spinlocks(1);
0408 
0409     printk("%s[#%d]:\n", str, ++die_counter);
0410     show_registers(regs);
0411     add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
0412     raw_spin_unlock_irq(&die_lock);
0413 
0414     oops_exit();
0415 
0416     if (in_interrupt())
0417         panic("Fatal exception in interrupt");
0418 
0419     if (panic_on_oops)
0420         panic("Fatal exception");
0421 
0422     if (regs && kexec_should_crash(current))
0423         crash_kexec(regs);
0424 
0425     make_task_dead(sig);
0426 }
0427 
0428 extern struct exception_table_entry __start___dbe_table[];
0429 extern struct exception_table_entry __stop___dbe_table[];
0430 
0431 __asm__(
0432 "   .section    __dbe_table, \"a\"\n"
0433 "   .previous           \n");
0434 
0435 /* Given an address, look for it in the exception tables. */
0436 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
0437 {
0438     const struct exception_table_entry *e;
0439 
0440     e = search_extable(__start___dbe_table,
0441                __stop___dbe_table - __start___dbe_table, addr);
0442     if (!e)
0443         e = search_module_dbetables(addr);
0444     return e;
0445 }
0446 
0447 asmlinkage void do_be(struct pt_regs *regs)
0448 {
0449     const int field = 2 * sizeof(unsigned long);
0450     const struct exception_table_entry *fixup = NULL;
0451     int data = regs->cp0_cause & 4;
0452     int action = MIPS_BE_FATAL;
0453     enum ctx_state prev_state;
0454 
0455     prev_state = exception_enter();
0456     /* XXX For now.  Fixme, this searches the wrong table ...  */
0457     if (data && !user_mode(regs))
0458         fixup = search_dbe_tables(exception_epc(regs));
0459 
0460     if (fixup)
0461         action = MIPS_BE_FIXUP;
0462 
0463     if (board_be_handler)
0464         action = board_be_handler(regs, fixup != NULL);
0465     else
0466         mips_cm_error_report();
0467 
0468     switch (action) {
0469     case MIPS_BE_DISCARD:
0470         goto out;
0471     case MIPS_BE_FIXUP:
0472         if (fixup) {
0473             regs->cp0_epc = fixup->nextinsn;
0474             goto out;
0475         }
0476         break;
0477     default:
0478         break;
0479     }
0480 
0481     /*
0482      * Assume it would be too dangerous to continue ...
0483      */
0484     printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
0485            data ? "Data" : "Instruction",
0486            field, regs->cp0_epc, field, regs->regs[31]);
0487     if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
0488                SIGBUS) == NOTIFY_STOP)
0489         goto out;
0490 
0491     die_if_kernel("Oops", regs);
0492     force_sig(SIGBUS);
0493 
0494 out:
0495     exception_exit(prev_state);
0496 }
0497 
0498 /*
0499  * ll/sc, rdhwr, sync emulation
0500  */
0501 
0502 #define OPCODE 0xfc000000
0503 #define BASE   0x03e00000
0504 #define RT     0x001f0000
0505 #define OFFSET 0x0000ffff
0506 #define LL     0xc0000000
0507 #define SC     0xe0000000
0508 #define SPEC0  0x00000000
0509 #define SPEC3  0x7c000000
0510 #define RD     0x0000f800
0511 #define FUNC   0x0000003f
0512 #define SYNC   0x0000000f
0513 #define RDHWR  0x0000003b
0514 
0515 /*  microMIPS definitions   */
0516 #define MM_POOL32A_FUNC 0xfc00ffff
0517 #define MM_RDHWR        0x00006b3c
0518 #define MM_RS           0x001f0000
0519 #define MM_RT           0x03e00000
0520 
0521 /*
0522  * The ll_bit is cleared by r*_switch.S
0523  */
0524 
0525 unsigned int ll_bit;
0526 struct task_struct *ll_task;
0527 
0528 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
0529 {
0530     unsigned long value, __user *vaddr;
0531     long offset;
0532 
0533     /*
0534      * analyse the ll instruction that just caused a ri exception
0535      * and put the referenced address to addr.
0536      */
0537 
0538     /* sign extend offset */
0539     offset = opcode & OFFSET;
0540     offset <<= 16;
0541     offset >>= 16;
0542 
0543     vaddr = (unsigned long __user *)
0544         ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
0545 
0546     if ((unsigned long)vaddr & 3)
0547         return SIGBUS;
0548     if (get_user(value, vaddr))
0549         return SIGSEGV;
0550 
0551     preempt_disable();
0552 
0553     if (ll_task == NULL || ll_task == current) {
0554         ll_bit = 1;
0555     } else {
0556         ll_bit = 0;
0557     }
0558     ll_task = current;
0559 
0560     preempt_enable();
0561 
0562     regs->regs[(opcode & RT) >> 16] = value;
0563 
0564     return 0;
0565 }
0566 
0567 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
0568 {
0569     unsigned long __user *vaddr;
0570     unsigned long reg;
0571     long offset;
0572 
0573     /*
0574      * analyse the sc instruction that just caused a ri exception
0575      * and put the referenced address to addr.
0576      */
0577 
0578     /* sign extend offset */
0579     offset = opcode & OFFSET;
0580     offset <<= 16;
0581     offset >>= 16;
0582 
0583     vaddr = (unsigned long __user *)
0584         ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
0585     reg = (opcode & RT) >> 16;
0586 
0587     if ((unsigned long)vaddr & 3)
0588         return SIGBUS;
0589 
0590     preempt_disable();
0591 
0592     if (ll_bit == 0 || ll_task != current) {
0593         regs->regs[reg] = 0;
0594         preempt_enable();
0595         return 0;
0596     }
0597 
0598     preempt_enable();
0599 
0600     if (put_user(regs->regs[reg], vaddr))
0601         return SIGSEGV;
0602 
0603     regs->regs[reg] = 1;
0604 
0605     return 0;
0606 }
0607 
0608 /*
0609  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
0610  * opcodes are supposed to result in coprocessor unusable exceptions if
0611  * executed on ll/sc-less processors.  That's the theory.  In practice a
0612  * few processors such as NEC's VR4100 throw reserved instruction exceptions
0613  * instead, so we're doing the emulation thing in both exception handlers.
0614  */
0615 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
0616 {
0617     if ((opcode & OPCODE) == LL) {
0618         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
0619                 1, regs, 0);
0620         return simulate_ll(regs, opcode);
0621     }
0622     if ((opcode & OPCODE) == SC) {
0623         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
0624                 1, regs, 0);
0625         return simulate_sc(regs, opcode);
0626     }
0627 
0628     return -1;          /* Must be something else ... */
0629 }
0630 
0631 /*
0632  * Simulate trapping 'rdhwr' instructions to provide user accessible
0633  * registers not implemented in hardware.
0634  */
0635 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
0636 {
0637     struct thread_info *ti = task_thread_info(current);
0638 
0639     perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
0640             1, regs, 0);
0641     switch (rd) {
0642     case MIPS_HWR_CPUNUM:       /* CPU number */
0643         regs->regs[rt] = smp_processor_id();
0644         return 0;
0645     case MIPS_HWR_SYNCISTEP:    /* SYNCI length */
0646         regs->regs[rt] = min(current_cpu_data.dcache.linesz,
0647                      current_cpu_data.icache.linesz);
0648         return 0;
0649     case MIPS_HWR_CC:       /* Read count register */
0650         regs->regs[rt] = read_c0_count();
0651         return 0;
0652     case MIPS_HWR_CCRES:        /* Count register resolution */
0653         switch (current_cpu_type()) {
0654         case CPU_20KC:
0655         case CPU_25KF:
0656             regs->regs[rt] = 1;
0657             break;
0658         default:
0659             regs->regs[rt] = 2;
0660         }
0661         return 0;
0662     case MIPS_HWR_ULR:      /* Read UserLocal register */
0663         regs->regs[rt] = ti->tp_value;
0664         return 0;
0665     default:
0666         return -1;
0667     }
0668 }
0669 
0670 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
0671 {
0672     if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
0673         int rd = (opcode & RD) >> 11;
0674         int rt = (opcode & RT) >> 16;
0675 
0676         simulate_rdhwr(regs, rd, rt);
0677         return 0;
0678     }
0679 
0680     /* Not ours.  */
0681     return -1;
0682 }
0683 
0684 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
0685 {
0686     if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
0687         int rd = (opcode & MM_RS) >> 16;
0688         int rt = (opcode & MM_RT) >> 21;
0689         simulate_rdhwr(regs, rd, rt);
0690         return 0;
0691     }
0692 
0693     /* Not ours.  */
0694     return -1;
0695 }
0696 
0697 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
0698 {
0699     if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
0700         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
0701                 1, regs, 0);
0702         return 0;
0703     }
0704 
0705     return -1;          /* Must be something else ... */
0706 }
0707 
0708 /*
0709  * Loongson-3 CSR instructions emulation
0710  */
0711 
0712 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
0713 
0714 #define LWC2             0xc8000000
0715 #define RS               BASE
0716 #define CSR_OPCODE2      0x00000118
0717 #define CSR_OPCODE2_MASK 0x000007ff
0718 #define CSR_FUNC_MASK    RT
0719 #define CSR_FUNC_CPUCFG  0x8
0720 
0721 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
0722                      unsigned int opcode)
0723 {
0724     int op = opcode & OPCODE;
0725     int op2 = opcode & CSR_OPCODE2_MASK;
0726     int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
0727 
0728     if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
0729         int rd = (opcode & RD) >> 11;
0730         int rs = (opcode & RS) >> 21;
0731         __u64 sel = regs->regs[rs];
0732 
0733         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
0734 
0735         /* Do not emulate on unsupported core models. */
0736         preempt_disable();
0737         if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
0738             preempt_enable();
0739             return -1;
0740         }
0741         regs->regs[rd] = loongson3_cpucfg_read_synthesized(
0742             &current_cpu_data, sel);
0743         preempt_enable();
0744         return 0;
0745     }
0746 
0747     /* Not ours.  */
0748     return -1;
0749 }
0750 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
0751 
0752 asmlinkage void do_ov(struct pt_regs *regs)
0753 {
0754     enum ctx_state prev_state;
0755 
0756     prev_state = exception_enter();
0757     die_if_kernel("Integer overflow", regs);
0758 
0759     force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
0760     exception_exit(prev_state);
0761 }
0762 
0763 #ifdef CONFIG_MIPS_FP_SUPPORT
0764 
0765 /*
0766  * Send SIGFPE according to FCSR Cause bits, which must have already
0767  * been masked against Enable bits.  This is impotant as Inexact can
0768  * happen together with Overflow or Underflow, and `ptrace' can set
0769  * any bits.
0770  */
0771 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
0772              struct task_struct *tsk)
0773 {
0774     int si_code = FPE_FLTUNK;
0775 
0776     if (fcr31 & FPU_CSR_INV_X)
0777         si_code = FPE_FLTINV;
0778     else if (fcr31 & FPU_CSR_DIV_X)
0779         si_code = FPE_FLTDIV;
0780     else if (fcr31 & FPU_CSR_OVF_X)
0781         si_code = FPE_FLTOVF;
0782     else if (fcr31 & FPU_CSR_UDF_X)
0783         si_code = FPE_FLTUND;
0784     else if (fcr31 & FPU_CSR_INE_X)
0785         si_code = FPE_FLTRES;
0786 
0787     force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
0788 }
0789 
0790 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
0791 {
0792     int si_code;
0793 
0794     switch (sig) {
0795     case 0:
0796         return 0;
0797 
0798     case SIGFPE:
0799         force_fcr31_sig(fcr31, fault_addr, current);
0800         return 1;
0801 
0802     case SIGBUS:
0803         force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
0804         return 1;
0805 
0806     case SIGSEGV:
0807         mmap_read_lock(current->mm);
0808         if (vma_lookup(current->mm, (unsigned long)fault_addr))
0809             si_code = SEGV_ACCERR;
0810         else
0811             si_code = SEGV_MAPERR;
0812         mmap_read_unlock(current->mm);
0813         force_sig_fault(SIGSEGV, si_code, fault_addr);
0814         return 1;
0815 
0816     default:
0817         force_sig(sig);
0818         return 1;
0819     }
0820 }
0821 
0822 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
0823                unsigned long old_epc, unsigned long old_ra)
0824 {
0825     union mips_instruction inst = { .word = opcode };
0826     void __user *fault_addr;
0827     unsigned long fcr31;
0828     int sig;
0829 
0830     /* If it's obviously not an FP instruction, skip it */
0831     switch (inst.i_format.opcode) {
0832     case cop1_op:
0833     case cop1x_op:
0834     case lwc1_op:
0835     case ldc1_op:
0836     case swc1_op:
0837     case sdc1_op:
0838         break;
0839 
0840     default:
0841         return -1;
0842     }
0843 
0844     /*
0845      * do_ri skipped over the instruction via compute_return_epc, undo
0846      * that for the FPU emulator.
0847      */
0848     regs->cp0_epc = old_epc;
0849     regs->regs[31] = old_ra;
0850 
0851     /* Run the emulator */
0852     sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
0853                        &fault_addr);
0854 
0855     /*
0856      * We can't allow the emulated instruction to leave any
0857      * enabled Cause bits set in $fcr31.
0858      */
0859     fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
0860     current->thread.fpu.fcr31 &= ~fcr31;
0861 
0862     /* Restore the hardware register state */
0863     own_fpu(1);
0864 
0865     /* Send a signal if required.  */
0866     process_fpemu_return(sig, fault_addr, fcr31);
0867 
0868     return 0;
0869 }
0870 
0871 /*
0872  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
0873  */
0874 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
0875 {
0876     enum ctx_state prev_state;
0877     void __user *fault_addr;
0878     int sig;
0879 
0880     prev_state = exception_enter();
0881     if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
0882                SIGFPE) == NOTIFY_STOP)
0883         goto out;
0884 
0885     /* Clear FCSR.Cause before enabling interrupts */
0886     write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
0887     local_irq_enable();
0888 
0889     die_if_kernel("FP exception in kernel code", regs);
0890 
0891     if (fcr31 & FPU_CSR_UNI_X) {
0892         /*
0893          * Unimplemented operation exception.  If we've got the full
0894          * software emulator on-board, let's use it...
0895          *
0896          * Force FPU to dump state into task/thread context.  We're
0897          * moving a lot of data here for what is probably a single
0898          * instruction, but the alternative is to pre-decode the FP
0899          * register operands before invoking the emulator, which seems
0900          * a bit extreme for what should be an infrequent event.
0901          */
0902 
0903         /* Run the emulator */
0904         sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
0905                            &fault_addr);
0906 
0907         /*
0908          * We can't allow the emulated instruction to leave any
0909          * enabled Cause bits set in $fcr31.
0910          */
0911         fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
0912         current->thread.fpu.fcr31 &= ~fcr31;
0913 
0914         /* Restore the hardware register state */
0915         own_fpu(1); /* Using the FPU again.  */
0916     } else {
0917         sig = SIGFPE;
0918         fault_addr = (void __user *) regs->cp0_epc;
0919     }
0920 
0921     /* Send a signal if required.  */
0922     process_fpemu_return(sig, fault_addr, fcr31);
0923 
0924 out:
0925     exception_exit(prev_state);
0926 }
0927 
0928 /*
0929  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
0930  * emulated more than some threshold number of instructions, force migration to
0931  * a "CPU" that has FP support.
0932  */
0933 static void mt_ase_fp_affinity(void)
0934 {
0935 #ifdef CONFIG_MIPS_MT_FPAFF
0936     if (mt_fpemul_threshold > 0 &&
0937          ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
0938         /*
0939          * If there's no FPU present, or if the application has already
0940          * restricted the allowed set to exclude any CPUs with FPUs,
0941          * we'll skip the procedure.
0942          */
0943         if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
0944             cpumask_t tmask;
0945 
0946             current->thread.user_cpus_allowed
0947                 = current->cpus_mask;
0948             cpumask_and(&tmask, &current->cpus_mask,
0949                     &mt_fpu_cpumask);
0950             set_cpus_allowed_ptr(current, &tmask);
0951             set_thread_flag(TIF_FPUBOUND);
0952         }
0953     }
0954 #endif /* CONFIG_MIPS_MT_FPAFF */
0955 }
0956 
0957 #else /* !CONFIG_MIPS_FP_SUPPORT */
0958 
0959 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
0960                unsigned long old_epc, unsigned long old_ra)
0961 {
0962     return -1;
0963 }
0964 
0965 #endif /* !CONFIG_MIPS_FP_SUPPORT */
0966 
0967 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
0968     const char *str)
0969 {
0970     char b[40];
0971 
0972 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
0973     if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
0974              SIGTRAP) == NOTIFY_STOP)
0975         return;
0976 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
0977 
0978     if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
0979                SIGTRAP) == NOTIFY_STOP)
0980         return;
0981 
0982     /*
0983      * A short test says that IRIX 5.3 sends SIGTRAP for all trap
0984      * insns, even for trap and break codes that indicate arithmetic
0985      * failures.  Weird ...
0986      * But should we continue the brokenness???  --macro
0987      */
0988     switch (code) {
0989     case BRK_OVERFLOW:
0990     case BRK_DIVZERO:
0991         scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
0992         die_if_kernel(b, regs);
0993         force_sig_fault(SIGFPE,
0994                 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
0995                 (void __user *) regs->cp0_epc);
0996         break;
0997     case BRK_BUG:
0998         die_if_kernel("Kernel bug detected", regs);
0999         force_sig(SIGTRAP);
1000         break;
1001     case BRK_MEMU:
1002         /*
1003          * This breakpoint code is used by the FPU emulator to retake
1004          * control of the CPU after executing the instruction from the
1005          * delay slot of an emulated branch.
1006          *
1007          * Terminate if exception was recognized as a delay slot return
1008          * otherwise handle as normal.
1009          */
1010         if (do_dsemulret(regs))
1011             return;
1012 
1013         die_if_kernel("Math emu break/trap", regs);
1014         force_sig(SIGTRAP);
1015         break;
1016     default:
1017         scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1018         die_if_kernel(b, regs);
1019         if (si_code) {
1020             force_sig_fault(SIGTRAP, si_code, NULL);
1021         } else {
1022             force_sig(SIGTRAP);
1023         }
1024     }
1025 }
1026 
1027 asmlinkage void do_bp(struct pt_regs *regs)
1028 {
1029     unsigned long epc = msk_isa16_mode(exception_epc(regs));
1030     unsigned int opcode, bcode;
1031     enum ctx_state prev_state;
1032     bool user = user_mode(regs);
1033 
1034     prev_state = exception_enter();
1035     current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1036     if (get_isa16_mode(regs->cp0_epc)) {
1037         u16 instr[2];
1038 
1039         if (__get_inst16(&instr[0], (u16 *)epc, user))
1040             goto out_sigsegv;
1041 
1042         if (!cpu_has_mmips) {
1043             /* MIPS16e mode */
1044             bcode = (instr[0] >> 5) & 0x3f;
1045         } else if (mm_insn_16bit(instr[0])) {
1046             /* 16-bit microMIPS BREAK */
1047             bcode = instr[0] & 0xf;
1048         } else {
1049             /* 32-bit microMIPS BREAK */
1050             if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1051                 goto out_sigsegv;
1052             opcode = (instr[0] << 16) | instr[1];
1053             bcode = (opcode >> 6) & ((1 << 20) - 1);
1054         }
1055     } else {
1056         if (__get_inst32(&opcode, (u32 *)epc, user))
1057             goto out_sigsegv;
1058         bcode = (opcode >> 6) & ((1 << 20) - 1);
1059     }
1060 
1061     /*
1062      * There is the ancient bug in the MIPS assemblers that the break
1063      * code starts left to bit 16 instead to bit 6 in the opcode.
1064      * Gas is bug-compatible, but not always, grrr...
1065      * We handle both cases with a simple heuristics.  --macro
1066      */
1067     if (bcode >= (1 << 10))
1068         bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1069 
1070     /*
1071      * notify the kprobe handlers, if instruction is likely to
1072      * pertain to them.
1073      */
1074     switch (bcode) {
1075     case BRK_UPROBE:
1076         if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1077                    current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1078             goto out;
1079         else
1080             break;
1081     case BRK_UPROBE_XOL:
1082         if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1083                    current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1084             goto out;
1085         else
1086             break;
1087     case BRK_KPROBE_BP:
1088         if (notify_die(DIE_BREAK, "debug", regs, bcode,
1089                    current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1090             goto out;
1091         else
1092             break;
1093     case BRK_KPROBE_SSTEPBP:
1094         if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1095                    current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1096             goto out;
1097         else
1098             break;
1099     default:
1100         break;
1101     }
1102 
1103     do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1104 
1105 out:
1106     exception_exit(prev_state);
1107     return;
1108 
1109 out_sigsegv:
1110     force_sig(SIGSEGV);
1111     goto out;
1112 }
1113 
1114 asmlinkage void do_tr(struct pt_regs *regs)
1115 {
1116     u32 opcode, tcode = 0;
1117     enum ctx_state prev_state;
1118     u16 instr[2];
1119     bool user = user_mode(regs);
1120     unsigned long epc = msk_isa16_mode(exception_epc(regs));
1121 
1122     prev_state = exception_enter();
1123     current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1124     if (get_isa16_mode(regs->cp0_epc)) {
1125         if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1126             __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1127             goto out_sigsegv;
1128         opcode = (instr[0] << 16) | instr[1];
1129         /* Immediate versions don't provide a code.  */
1130         if (!(opcode & OPCODE))
1131             tcode = (opcode >> 12) & ((1 << 4) - 1);
1132     } else {
1133         if (__get_inst32(&opcode, (u32 *)epc, user))
1134             goto out_sigsegv;
1135         /* Immediate versions don't provide a code.  */
1136         if (!(opcode & OPCODE))
1137             tcode = (opcode >> 6) & ((1 << 10) - 1);
1138     }
1139 
1140     do_trap_or_bp(regs, tcode, 0, "Trap");
1141 
1142 out:
1143     exception_exit(prev_state);
1144     return;
1145 
1146 out_sigsegv:
1147     force_sig(SIGSEGV);
1148     goto out;
1149 }
1150 
1151 asmlinkage void do_ri(struct pt_regs *regs)
1152 {
1153     unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1154     unsigned long old_epc = regs->cp0_epc;
1155     unsigned long old31 = regs->regs[31];
1156     enum ctx_state prev_state;
1157     unsigned int opcode = 0;
1158     int status = -1;
1159 
1160     /*
1161      * Avoid any kernel code. Just emulate the R2 instruction
1162      * as quickly as possible.
1163      */
1164     if (mipsr2_emulation && cpu_has_mips_r6 &&
1165         likely(user_mode(regs)) &&
1166         likely(get_user(opcode, epc) >= 0)) {
1167         unsigned long fcr31 = 0;
1168 
1169         status = mipsr2_decoder(regs, opcode, &fcr31);
1170         switch (status) {
1171         case 0:
1172         case SIGEMT:
1173             return;
1174         case SIGILL:
1175             goto no_r2_instr;
1176         default:
1177             process_fpemu_return(status,
1178                          &current->thread.cp0_baduaddr,
1179                          fcr31);
1180             return;
1181         }
1182     }
1183 
1184 no_r2_instr:
1185 
1186     prev_state = exception_enter();
1187     current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1188 
1189     if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1190                SIGILL) == NOTIFY_STOP)
1191         goto out;
1192 
1193     die_if_kernel("Reserved instruction in kernel code", regs);
1194 
1195     if (unlikely(compute_return_epc(regs) < 0))
1196         goto out;
1197 
1198     if (!get_isa16_mode(regs->cp0_epc)) {
1199         if (unlikely(get_user(opcode, epc) < 0))
1200             status = SIGSEGV;
1201 
1202         if (!cpu_has_llsc && status < 0)
1203             status = simulate_llsc(regs, opcode);
1204 
1205         if (status < 0)
1206             status = simulate_rdhwr_normal(regs, opcode);
1207 
1208         if (status < 0)
1209             status = simulate_sync(regs, opcode);
1210 
1211         if (status < 0)
1212             status = simulate_fp(regs, opcode, old_epc, old31);
1213 
1214 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1215         if (status < 0)
1216             status = simulate_loongson3_cpucfg(regs, opcode);
1217 #endif
1218     } else if (cpu_has_mmips) {
1219         unsigned short mmop[2] = { 0 };
1220 
1221         if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1222             status = SIGSEGV;
1223         if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1224             status = SIGSEGV;
1225         opcode = mmop[0];
1226         opcode = (opcode << 16) | mmop[1];
1227 
1228         if (status < 0)
1229             status = simulate_rdhwr_mm(regs, opcode);
1230     }
1231 
1232     if (status < 0)
1233         status = SIGILL;
1234 
1235     if (unlikely(status > 0)) {
1236         regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1237         regs->regs[31] = old31;
1238         force_sig(status);
1239     }
1240 
1241 out:
1242     exception_exit(prev_state);
1243 }
1244 
1245 /*
1246  * No lock; only written during early bootup by CPU 0.
1247  */
1248 static RAW_NOTIFIER_HEAD(cu2_chain);
1249 
1250 int __ref register_cu2_notifier(struct notifier_block *nb)
1251 {
1252     return raw_notifier_chain_register(&cu2_chain, nb);
1253 }
1254 
1255 int cu2_notifier_call_chain(unsigned long val, void *v)
1256 {
1257     return raw_notifier_call_chain(&cu2_chain, val, v);
1258 }
1259 
1260 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1261     void *data)
1262 {
1263     struct pt_regs *regs = data;
1264 
1265     die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1266                   "instruction", regs);
1267     force_sig(SIGILL);
1268 
1269     return NOTIFY_OK;
1270 }
1271 
1272 #ifdef CONFIG_MIPS_FP_SUPPORT
1273 
1274 static int enable_restore_fp_context(int msa)
1275 {
1276     int err, was_fpu_owner, prior_msa;
1277     bool first_fp;
1278 
1279     /* Initialize context if it hasn't been used already */
1280     first_fp = init_fp_ctx(current);
1281 
1282     if (first_fp) {
1283         preempt_disable();
1284         err = own_fpu_inatomic(1);
1285         if (msa && !err) {
1286             enable_msa();
1287             /*
1288              * with MSA enabled, userspace can see MSACSR
1289              * and MSA regs, but the values in them are from
1290              * other task before current task, restore them
1291              * from saved fp/msa context
1292              */
1293             write_msa_csr(current->thread.fpu.msacsr);
1294             /*
1295              * own_fpu_inatomic(1) just restore low 64bit,
1296              * fix the high 64bit
1297              */
1298             init_msa_upper();
1299             set_thread_flag(TIF_USEDMSA);
1300             set_thread_flag(TIF_MSA_CTX_LIVE);
1301         }
1302         preempt_enable();
1303         return err;
1304     }
1305 
1306     /*
1307      * This task has formerly used the FP context.
1308      *
1309      * If this thread has no live MSA vector context then we can simply
1310      * restore the scalar FP context. If it has live MSA vector context
1311      * (that is, it has or may have used MSA since last performing a
1312      * function call) then we'll need to restore the vector context. This
1313      * applies even if we're currently only executing a scalar FP
1314      * instruction. This is because if we were to later execute an MSA
1315      * instruction then we'd either have to:
1316      *
1317      *  - Restore the vector context & clobber any registers modified by
1318      *    scalar FP instructions between now & then.
1319      *
1320      * or
1321      *
1322      *  - Not restore the vector context & lose the most significant bits
1323      *    of all vector registers.
1324      *
1325      * Neither of those options is acceptable. We cannot restore the least
1326      * significant bits of the registers now & only restore the most
1327      * significant bits later because the most significant bits of any
1328      * vector registers whose aliased FP register is modified now will have
1329      * been zeroed. We'd have no way to know that when restoring the vector
1330      * context & thus may load an outdated value for the most significant
1331      * bits of a vector register.
1332      */
1333     if (!msa && !thread_msa_context_live())
1334         return own_fpu(1);
1335 
1336     /*
1337      * This task is using or has previously used MSA. Thus we require
1338      * that Status.FR == 1.
1339      */
1340     preempt_disable();
1341     was_fpu_owner = is_fpu_owner();
1342     err = own_fpu_inatomic(0);
1343     if (err)
1344         goto out;
1345 
1346     enable_msa();
1347     write_msa_csr(current->thread.fpu.msacsr);
1348     set_thread_flag(TIF_USEDMSA);
1349 
1350     /*
1351      * If this is the first time that the task is using MSA and it has
1352      * previously used scalar FP in this time slice then we already nave
1353      * FP context which we shouldn't clobber. We do however need to clear
1354      * the upper 64b of each vector register so that this task has no
1355      * opportunity to see data left behind by another.
1356      */
1357     prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1358     if (!prior_msa && was_fpu_owner) {
1359         init_msa_upper();
1360 
1361         goto out;
1362     }
1363 
1364     if (!prior_msa) {
1365         /*
1366          * Restore the least significant 64b of each vector register
1367          * from the existing scalar FP context.
1368          */
1369         _restore_fp(current);
1370 
1371         /*
1372          * The task has not formerly used MSA, so clear the upper 64b
1373          * of each vector register such that it cannot see data left
1374          * behind by another task.
1375          */
1376         init_msa_upper();
1377     } else {
1378         /* We need to restore the vector context. */
1379         restore_msa(current);
1380 
1381         /* Restore the scalar FP control & status register */
1382         if (!was_fpu_owner)
1383             write_32bit_cp1_register(CP1_STATUS,
1384                          current->thread.fpu.fcr31);
1385     }
1386 
1387 out:
1388     preempt_enable();
1389 
1390     return 0;
1391 }
1392 
1393 #else /* !CONFIG_MIPS_FP_SUPPORT */
1394 
1395 static int enable_restore_fp_context(int msa)
1396 {
1397     return SIGILL;
1398 }
1399 
1400 #endif /* CONFIG_MIPS_FP_SUPPORT */
1401 
1402 asmlinkage void do_cpu(struct pt_regs *regs)
1403 {
1404     enum ctx_state prev_state;
1405     unsigned int __user *epc;
1406     unsigned long old_epc, old31;
1407     unsigned int opcode;
1408     unsigned int cpid;
1409     int status;
1410 
1411     prev_state = exception_enter();
1412     cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1413 
1414     if (cpid != 2)
1415         die_if_kernel("do_cpu invoked from kernel context!", regs);
1416 
1417     switch (cpid) {
1418     case 0:
1419         epc = (unsigned int __user *)exception_epc(regs);
1420         old_epc = regs->cp0_epc;
1421         old31 = regs->regs[31];
1422         opcode = 0;
1423         status = -1;
1424 
1425         if (unlikely(compute_return_epc(regs) < 0))
1426             break;
1427 
1428         if (!get_isa16_mode(regs->cp0_epc)) {
1429             if (unlikely(get_user(opcode, epc) < 0))
1430                 status = SIGSEGV;
1431 
1432             if (!cpu_has_llsc && status < 0)
1433                 status = simulate_llsc(regs, opcode);
1434         }
1435 
1436         if (status < 0)
1437             status = SIGILL;
1438 
1439         if (unlikely(status > 0)) {
1440             regs->cp0_epc = old_epc;    /* Undo skip-over.  */
1441             regs->regs[31] = old31;
1442             force_sig(status);
1443         }
1444 
1445         break;
1446 
1447 #ifdef CONFIG_MIPS_FP_SUPPORT
1448     case 3:
1449         /*
1450          * The COP3 opcode space and consequently the CP0.Status.CU3
1451          * bit and the CP0.Cause.CE=3 encoding have been removed as
1452          * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1453          * up the space has been reused for COP1X instructions, that
1454          * are enabled by the CP0.Status.CU1 bit and consequently
1455          * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1456          * exceptions.  Some FPU-less processors that implement one
1457          * of these ISAs however use this code erroneously for COP1X
1458          * instructions.  Therefore we redirect this trap to the FP
1459          * emulator too.
1460          */
1461         if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1462             force_sig(SIGILL);
1463             break;
1464         }
1465         fallthrough;
1466     case 1: {
1467         void __user *fault_addr;
1468         unsigned long fcr31;
1469         int err, sig;
1470 
1471         err = enable_restore_fp_context(0);
1472 
1473         if (raw_cpu_has_fpu && !err)
1474             break;
1475 
1476         sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1477                            &fault_addr);
1478 
1479         /*
1480          * We can't allow the emulated instruction to leave
1481          * any enabled Cause bits set in $fcr31.
1482          */
1483         fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1484         current->thread.fpu.fcr31 &= ~fcr31;
1485 
1486         /* Send a signal if required.  */
1487         if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1488             mt_ase_fp_affinity();
1489 
1490         break;
1491     }
1492 #else /* CONFIG_MIPS_FP_SUPPORT */
1493     case 1:
1494     case 3:
1495         force_sig(SIGILL);
1496         break;
1497 #endif /* CONFIG_MIPS_FP_SUPPORT */
1498 
1499     case 2:
1500         raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1501         break;
1502     }
1503 
1504     exception_exit(prev_state);
1505 }
1506 
1507 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1508 {
1509     enum ctx_state prev_state;
1510 
1511     prev_state = exception_enter();
1512     current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1513     if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1514                current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1515         goto out;
1516 
1517     /* Clear MSACSR.Cause before enabling interrupts */
1518     write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1519     local_irq_enable();
1520 
1521     die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1522     force_sig(SIGFPE);
1523 out:
1524     exception_exit(prev_state);
1525 }
1526 
1527 asmlinkage void do_msa(struct pt_regs *regs)
1528 {
1529     enum ctx_state prev_state;
1530     int err;
1531 
1532     prev_state = exception_enter();
1533 
1534     if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1535         force_sig(SIGILL);
1536         goto out;
1537     }
1538 
1539     die_if_kernel("do_msa invoked from kernel context!", regs);
1540 
1541     err = enable_restore_fp_context(1);
1542     if (err)
1543         force_sig(SIGILL);
1544 out:
1545     exception_exit(prev_state);
1546 }
1547 
1548 asmlinkage void do_mdmx(struct pt_regs *regs)
1549 {
1550     enum ctx_state prev_state;
1551 
1552     prev_state = exception_enter();
1553     force_sig(SIGILL);
1554     exception_exit(prev_state);
1555 }
1556 
1557 /*
1558  * Called with interrupts disabled.
1559  */
1560 asmlinkage void do_watch(struct pt_regs *regs)
1561 {
1562     enum ctx_state prev_state;
1563 
1564     prev_state = exception_enter();
1565     /*
1566      * Clear WP (bit 22) bit of cause register so we don't loop
1567      * forever.
1568      */
1569     clear_c0_cause(CAUSEF_WP);
1570 
1571     /*
1572      * If the current thread has the watch registers loaded, save
1573      * their values and send SIGTRAP.  Otherwise another thread
1574      * left the registers set, clear them and continue.
1575      */
1576     if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1577         mips_read_watch_registers();
1578         local_irq_enable();
1579         force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1580     } else {
1581         mips_clear_watch_registers();
1582         local_irq_enable();
1583     }
1584     exception_exit(prev_state);
1585 }
1586 
1587 asmlinkage void do_mcheck(struct pt_regs *regs)
1588 {
1589     int multi_match = regs->cp0_status & ST0_TS;
1590     enum ctx_state prev_state;
1591 
1592     prev_state = exception_enter();
1593     show_regs(regs);
1594 
1595     if (multi_match) {
1596         dump_tlb_regs();
1597         pr_info("\n");
1598         dump_tlb_all();
1599     }
1600 
1601     show_code((void *)regs->cp0_epc, user_mode(regs));
1602 
1603     /*
1604      * Some chips may have other causes of machine check (e.g. SB1
1605      * graduation timer)
1606      */
1607     panic("Caught Machine Check exception - %scaused by multiple "
1608           "matching entries in the TLB.",
1609           (multi_match) ? "" : "not ");
1610 }
1611 
1612 asmlinkage void do_mt(struct pt_regs *regs)
1613 {
1614     int subcode;
1615 
1616     subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1617             >> VPECONTROL_EXCPT_SHIFT;
1618     switch (subcode) {
1619     case 0:
1620         printk(KERN_DEBUG "Thread Underflow\n");
1621         break;
1622     case 1:
1623         printk(KERN_DEBUG "Thread Overflow\n");
1624         break;
1625     case 2:
1626         printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1627         break;
1628     case 3:
1629         printk(KERN_DEBUG "Gating Storage Exception\n");
1630         break;
1631     case 4:
1632         printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1633         break;
1634     case 5:
1635         printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1636         break;
1637     default:
1638         printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1639             subcode);
1640         break;
1641     }
1642     die_if_kernel("MIPS MT Thread exception in kernel", regs);
1643 
1644     force_sig(SIGILL);
1645 }
1646 
1647 
1648 asmlinkage void do_dsp(struct pt_regs *regs)
1649 {
1650     if (cpu_has_dsp)
1651         panic("Unexpected DSP exception");
1652 
1653     force_sig(SIGILL);
1654 }
1655 
1656 asmlinkage void do_reserved(struct pt_regs *regs)
1657 {
1658     /*
1659      * Game over - no way to handle this if it ever occurs.  Most probably
1660      * caused by a new unknown cpu type or after another deadly
1661      * hard/software error.
1662      */
1663     show_regs(regs);
1664     panic("Caught reserved exception %ld - should not happen.",
1665           (regs->cp0_cause & 0x7f) >> 2);
1666 }
1667 
1668 static int __initdata l1parity = 1;
1669 static int __init nol1parity(char *s)
1670 {
1671     l1parity = 0;
1672     return 1;
1673 }
1674 __setup("nol1par", nol1parity);
1675 static int __initdata l2parity = 1;
1676 static int __init nol2parity(char *s)
1677 {
1678     l2parity = 0;
1679     return 1;
1680 }
1681 __setup("nol2par", nol2parity);
1682 
1683 /*
1684  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1685  * it different ways.
1686  */
1687 static inline __init void parity_protection_init(void)
1688 {
1689 #define ERRCTL_PE   0x80000000
1690 #define ERRCTL_L2P  0x00800000
1691 
1692     if (mips_cm_revision() >= CM_REV_CM3) {
1693         ulong gcr_ectl, cp0_ectl;
1694 
1695         /*
1696          * With CM3 systems we need to ensure that the L1 & L2
1697          * parity enables are set to the same value, since this
1698          * is presumed by the hardware engineers.
1699          *
1700          * If the user disabled either of L1 or L2 ECC checking,
1701          * disable both.
1702          */
1703         l1parity &= l2parity;
1704         l2parity &= l1parity;
1705 
1706         /* Probe L1 ECC support */
1707         cp0_ectl = read_c0_ecc();
1708         write_c0_ecc(cp0_ectl | ERRCTL_PE);
1709         back_to_back_c0_hazard();
1710         cp0_ectl = read_c0_ecc();
1711 
1712         /* Probe L2 ECC support */
1713         gcr_ectl = read_gcr_err_control();
1714 
1715         if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1716             !(cp0_ectl & ERRCTL_PE)) {
1717             /*
1718              * One of L1 or L2 ECC checking isn't supported,
1719              * so we cannot enable either.
1720              */
1721             l1parity = l2parity = 0;
1722         }
1723 
1724         /* Configure L1 ECC checking */
1725         if (l1parity)
1726             cp0_ectl |= ERRCTL_PE;
1727         else
1728             cp0_ectl &= ~ERRCTL_PE;
1729         write_c0_ecc(cp0_ectl);
1730         back_to_back_c0_hazard();
1731         WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1732 
1733         /* Configure L2 ECC checking */
1734         if (l2parity)
1735             gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1736         else
1737             gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1738         write_gcr_err_control(gcr_ectl);
1739         gcr_ectl = read_gcr_err_control();
1740         gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1741         WARN_ON(!!gcr_ectl != l2parity);
1742 
1743         pr_info("Cache parity protection %sabled\n",
1744             l1parity ? "en" : "dis");
1745         return;
1746     }
1747 
1748     switch (current_cpu_type()) {
1749     case CPU_24K:
1750     case CPU_34K:
1751     case CPU_74K:
1752     case CPU_1004K:
1753     case CPU_1074K:
1754     case CPU_INTERAPTIV:
1755     case CPU_PROAPTIV:
1756     case CPU_P5600:
1757     case CPU_QEMU_GENERIC:
1758     case CPU_P6600:
1759         {
1760             unsigned long errctl;
1761             unsigned int l1parity_present, l2parity_present;
1762 
1763             errctl = read_c0_ecc();
1764             errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1765 
1766             /* probe L1 parity support */
1767             write_c0_ecc(errctl | ERRCTL_PE);
1768             back_to_back_c0_hazard();
1769             l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1770 
1771             /* probe L2 parity support */
1772             write_c0_ecc(errctl|ERRCTL_L2P);
1773             back_to_back_c0_hazard();
1774             l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1775 
1776             if (l1parity_present && l2parity_present) {
1777                 if (l1parity)
1778                     errctl |= ERRCTL_PE;
1779                 if (l1parity ^ l2parity)
1780                     errctl |= ERRCTL_L2P;
1781             } else if (l1parity_present) {
1782                 if (l1parity)
1783                     errctl |= ERRCTL_PE;
1784             } else if (l2parity_present) {
1785                 if (l2parity)
1786                     errctl |= ERRCTL_L2P;
1787             } else {
1788                 /* No parity available */
1789             }
1790 
1791             printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1792 
1793             write_c0_ecc(errctl);
1794             back_to_back_c0_hazard();
1795             errctl = read_c0_ecc();
1796             printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1797 
1798             if (l1parity_present)
1799                 printk(KERN_INFO "Cache parity protection %sabled\n",
1800                        (errctl & ERRCTL_PE) ? "en" : "dis");
1801 
1802             if (l2parity_present) {
1803                 if (l1parity_present && l1parity)
1804                     errctl ^= ERRCTL_L2P;
1805                 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1806                        (errctl & ERRCTL_L2P) ? "en" : "dis");
1807             }
1808         }
1809         break;
1810 
1811     case CPU_5KC:
1812     case CPU_5KE:
1813     case CPU_LOONGSON32:
1814         write_c0_ecc(0x80000000);
1815         back_to_back_c0_hazard();
1816         /* Set the PE bit (bit 31) in the c0_errctl register. */
1817         printk(KERN_INFO "Cache parity protection %sabled\n",
1818                (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1819         break;
1820     case CPU_20KC:
1821     case CPU_25KF:
1822         /* Clear the DE bit (bit 16) in the c0_status register. */
1823         printk(KERN_INFO "Enable cache parity protection for "
1824                "MIPS 20KC/25KF CPUs.\n");
1825         clear_c0_status(ST0_DE);
1826         break;
1827     default:
1828         break;
1829     }
1830 }
1831 
1832 asmlinkage void cache_parity_error(void)
1833 {
1834     const int field = 2 * sizeof(unsigned long);
1835     unsigned int reg_val;
1836 
1837     /* For the moment, report the problem and hang. */
1838     printk("Cache error exception:\n");
1839     printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1840     reg_val = read_c0_cacheerr();
1841     printk("c0_cacheerr == %08x\n", reg_val);
1842 
1843     printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1844            reg_val & (1<<30) ? "secondary" : "primary",
1845            reg_val & (1<<31) ? "data" : "insn");
1846     if ((cpu_has_mips_r2_r6) &&
1847         ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1848         pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1849             reg_val & (1<<29) ? "ED " : "",
1850             reg_val & (1<<28) ? "ET " : "",
1851             reg_val & (1<<27) ? "ES " : "",
1852             reg_val & (1<<26) ? "EE " : "",
1853             reg_val & (1<<25) ? "EB " : "",
1854             reg_val & (1<<24) ? "EI " : "",
1855             reg_val & (1<<23) ? "E1 " : "",
1856             reg_val & (1<<22) ? "E0 " : "");
1857     } else {
1858         pr_err("Error bits: %s%s%s%s%s%s%s\n",
1859             reg_val & (1<<29) ? "ED " : "",
1860             reg_val & (1<<28) ? "ET " : "",
1861             reg_val & (1<<26) ? "EE " : "",
1862             reg_val & (1<<25) ? "EB " : "",
1863             reg_val & (1<<24) ? "EI " : "",
1864             reg_val & (1<<23) ? "E1 " : "",
1865             reg_val & (1<<22) ? "E0 " : "");
1866     }
1867     printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1868 
1869 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1870     if (reg_val & (1<<22))
1871         printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1872 
1873     if (reg_val & (1<<23))
1874         printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1875 #endif
1876 
1877     panic("Can't handle the cache error!");
1878 }
1879 
1880 asmlinkage void do_ftlb(void)
1881 {
1882     const int field = 2 * sizeof(unsigned long);
1883     unsigned int reg_val;
1884 
1885     /* For the moment, report the problem and hang. */
1886     if ((cpu_has_mips_r2_r6) &&
1887         (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1888         ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1889         pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1890                read_c0_ecc());
1891         pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1892         reg_val = read_c0_cacheerr();
1893         pr_err("c0_cacheerr == %08x\n", reg_val);
1894 
1895         if ((reg_val & 0xc0000000) == 0xc0000000) {
1896             pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1897         } else {
1898             pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1899                    reg_val & (1<<30) ? "secondary" : "primary",
1900                    reg_val & (1<<31) ? "data" : "insn");
1901         }
1902     } else {
1903         pr_err("FTLB error exception\n");
1904     }
1905     /* Just print the cacheerr bits for now */
1906     cache_parity_error();
1907 }
1908 
1909 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1910 {
1911     u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1912             LOONGSON_DIAG1_EXCCODE_SHIFT;
1913     enum ctx_state prev_state;
1914 
1915     prev_state = exception_enter();
1916 
1917     switch (exccode) {
1918     case 0x08:
1919         /* Undocumented exception, will trigger on certain
1920          * also-undocumented instructions accessible from userspace.
1921          * Processor state is not otherwise corrupted, but currently
1922          * we don't know how to proceed. Maybe there is some
1923          * undocumented control flag to enable the instructions?
1924          */
1925         force_sig(SIGILL);
1926         break;
1927 
1928     default:
1929         /* None of the other exceptions, documented or not, have
1930          * further details given; none are encountered in the wild
1931          * either. Panic in case some of them turn out to be fatal.
1932          */
1933         show_regs(regs);
1934         panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1935     }
1936 
1937     exception_exit(prev_state);
1938 }
1939 
1940 /*
1941  * SDBBP EJTAG debug exception handler.
1942  * We skip the instruction and return to the next instruction.
1943  */
1944 void ejtag_exception_handler(struct pt_regs *regs)
1945 {
1946     const int field = 2 * sizeof(unsigned long);
1947     unsigned long depc, old_epc, old_ra;
1948     unsigned int debug;
1949 
1950     printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1951     depc = read_c0_depc();
1952     debug = read_c0_debug();
1953     printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1954     if (debug & 0x80000000) {
1955         /*
1956          * In branch delay slot.
1957          * We cheat a little bit here and use EPC to calculate the
1958          * debug return address (DEPC). EPC is restored after the
1959          * calculation.
1960          */
1961         old_epc = regs->cp0_epc;
1962         old_ra = regs->regs[31];
1963         regs->cp0_epc = depc;
1964         compute_return_epc(regs);
1965         depc = regs->cp0_epc;
1966         regs->cp0_epc = old_epc;
1967         regs->regs[31] = old_ra;
1968     } else
1969         depc += 4;
1970     write_c0_depc(depc);
1971 
1972 #if 0
1973     printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1974     write_c0_debug(debug | 0x100);
1975 #endif
1976 }
1977 
1978 /*
1979  * NMI exception handler.
1980  * No lock; only written during early bootup by CPU 0.
1981  */
1982 static RAW_NOTIFIER_HEAD(nmi_chain);
1983 
1984 int register_nmi_notifier(struct notifier_block *nb)
1985 {
1986     return raw_notifier_chain_register(&nmi_chain, nb);
1987 }
1988 
1989 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1990 {
1991     char str[100];
1992 
1993     nmi_enter();
1994     raw_notifier_call_chain(&nmi_chain, 0, regs);
1995     bust_spinlocks(1);
1996     snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1997          smp_processor_id(), regs->cp0_epc);
1998     regs->cp0_epc = read_c0_errorepc();
1999     die(str, regs);
2000     nmi_exit();
2001 }
2002 
2003 unsigned long ebase;
2004 EXPORT_SYMBOL_GPL(ebase);
2005 unsigned long exception_handlers[32];
2006 unsigned long vi_handlers[64];
2007 
2008 void reserve_exception_space(phys_addr_t addr, unsigned long size)
2009 {
2010     memblock_reserve(addr, size);
2011 }
2012 
2013 void __init *set_except_vector(int n, void *addr)
2014 {
2015     unsigned long handler = (unsigned long) addr;
2016     unsigned long old_handler;
2017 
2018 #ifdef CONFIG_CPU_MICROMIPS
2019     /*
2020      * Only the TLB handlers are cache aligned with an even
2021      * address. All other handlers are on an odd address and
2022      * require no modification. Otherwise, MIPS32 mode will
2023      * be entered when handling any TLB exceptions. That
2024      * would be bad...since we must stay in microMIPS mode.
2025      */
2026     if (!(handler & 0x1))
2027         handler |= 1;
2028 #endif
2029     old_handler = xchg(&exception_handlers[n], handler);
2030 
2031     if (n == 0 && cpu_has_divec) {
2032 #ifdef CONFIG_CPU_MICROMIPS
2033         unsigned long jump_mask = ~((1 << 27) - 1);
2034 #else
2035         unsigned long jump_mask = ~((1 << 28) - 1);
2036 #endif
2037         u32 *buf = (u32 *)(ebase + 0x200);
2038         unsigned int k0 = 26;
2039         if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2040             uasm_i_j(&buf, handler & ~jump_mask);
2041             uasm_i_nop(&buf);
2042         } else {
2043             UASM_i_LA(&buf, k0, handler);
2044             uasm_i_jr(&buf, k0);
2045             uasm_i_nop(&buf);
2046         }
2047         local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2048     }
2049     return (void *)old_handler;
2050 }
2051 
2052 static void do_default_vi(void)
2053 {
2054     show_regs(get_irq_regs());
2055     panic("Caught unexpected vectored interrupt.");
2056 }
2057 
2058 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2059 {
2060     unsigned long handler;
2061     unsigned long old_handler = vi_handlers[n];
2062     int srssets = current_cpu_data.srsets;
2063     u16 *h;
2064     unsigned char *b;
2065 
2066     BUG_ON(!cpu_has_veic && !cpu_has_vint);
2067 
2068     if (addr == NULL) {
2069         handler = (unsigned long) do_default_vi;
2070         srs = 0;
2071     } else
2072         handler = (unsigned long) addr;
2073     vi_handlers[n] = handler;
2074 
2075     b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2076 
2077     if (srs >= srssets)
2078         panic("Shadow register set %d not supported", srs);
2079 
2080     if (cpu_has_veic) {
2081         if (board_bind_eic_interrupt)
2082             board_bind_eic_interrupt(n, srs);
2083     } else if (cpu_has_vint) {
2084         /* SRSMap is only defined if shadow sets are implemented */
2085         if (srssets > 1)
2086             change_c0_srsmap(0xf << n*4, srs << n*4);
2087     }
2088 
2089     if (srs == 0) {
2090         /*
2091          * If no shadow set is selected then use the default handler
2092          * that does normal register saving and standard interrupt exit
2093          */
2094         extern const u8 except_vec_vi[], except_vec_vi_lui[];
2095         extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2096         extern const u8 rollback_except_vec_vi[];
2097         const u8 *vec_start = using_rollback_handler() ?
2098                       rollback_except_vec_vi : except_vec_vi;
2099 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2100         const int lui_offset = except_vec_vi_lui - vec_start + 2;
2101         const int ori_offset = except_vec_vi_ori - vec_start + 2;
2102 #else
2103         const int lui_offset = except_vec_vi_lui - vec_start;
2104         const int ori_offset = except_vec_vi_ori - vec_start;
2105 #endif
2106         const int handler_len = except_vec_vi_end - vec_start;
2107 
2108         if (handler_len > VECTORSPACING) {
2109             /*
2110              * Sigh... panicing won't help as the console
2111              * is probably not configured :(
2112              */
2113             panic("VECTORSPACING too small");
2114         }
2115 
2116         set_handler(((unsigned long)b - ebase), vec_start,
2117 #ifdef CONFIG_CPU_MICROMIPS
2118                 (handler_len - 1));
2119 #else
2120                 handler_len);
2121 #endif
2122         h = (u16 *)(b + lui_offset);
2123         *h = (handler >> 16) & 0xffff;
2124         h = (u16 *)(b + ori_offset);
2125         *h = (handler & 0xffff);
2126         local_flush_icache_range((unsigned long)b,
2127                      (unsigned long)(b+handler_len));
2128     }
2129     else {
2130         /*
2131          * In other cases jump directly to the interrupt handler. It
2132          * is the handler's responsibility to save registers if required
2133          * (eg hi/lo) and return from the exception using "eret".
2134          */
2135         u32 insn;
2136 
2137         h = (u16 *)b;
2138         /* j handler */
2139 #ifdef CONFIG_CPU_MICROMIPS
2140         insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2141 #else
2142         insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2143 #endif
2144         h[0] = (insn >> 16) & 0xffff;
2145         h[1] = insn & 0xffff;
2146         h[2] = 0;
2147         h[3] = 0;
2148         local_flush_icache_range((unsigned long)b,
2149                      (unsigned long)(b+8));
2150     }
2151 
2152     return (void *)old_handler;
2153 }
2154 
2155 void *set_vi_handler(int n, vi_handler_t addr)
2156 {
2157     return set_vi_srs_handler(n, addr, 0);
2158 }
2159 
2160 extern void tlb_init(void);
2161 
2162 /*
2163  * Timer interrupt
2164  */
2165 int cp0_compare_irq;
2166 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2167 int cp0_compare_irq_shift;
2168 
2169 /*
2170  * Performance counter IRQ or -1 if shared with timer
2171  */
2172 int cp0_perfcount_irq;
2173 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2174 
2175 /*
2176  * Fast debug channel IRQ or -1 if not present
2177  */
2178 int cp0_fdc_irq;
2179 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2180 
2181 static int noulri;
2182 
2183 static int __init ulri_disable(char *s)
2184 {
2185     pr_info("Disabling ulri\n");
2186     noulri = 1;
2187 
2188     return 1;
2189 }
2190 __setup("noulri", ulri_disable);
2191 
2192 /* configure STATUS register */
2193 static void configure_status(void)
2194 {
2195     /*
2196      * Disable coprocessors and select 32-bit or 64-bit addressing
2197      * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2198      * flag that some firmware may have left set and the TS bit (for
2199      * IP27).  Set XX for ISA IV code to work.
2200      */
2201     unsigned int status_set = ST0_KERNEL_CUMASK;
2202 #ifdef CONFIG_64BIT
2203     status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2204 #endif
2205     if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2206         status_set |= ST0_XX;
2207     if (cpu_has_dsp)
2208         status_set |= ST0_MX;
2209 
2210     change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2211              status_set);
2212     back_to_back_c0_hazard();
2213 }
2214 
2215 unsigned int hwrena;
2216 EXPORT_SYMBOL_GPL(hwrena);
2217 
2218 /* configure HWRENA register */
2219 static void configure_hwrena(void)
2220 {
2221     hwrena = cpu_hwrena_impl_bits;
2222 
2223     if (cpu_has_mips_r2_r6)
2224         hwrena |= MIPS_HWRENA_CPUNUM |
2225               MIPS_HWRENA_SYNCISTEP |
2226               MIPS_HWRENA_CC |
2227               MIPS_HWRENA_CCRES;
2228 
2229     if (!noulri && cpu_has_userlocal)
2230         hwrena |= MIPS_HWRENA_ULR;
2231 
2232     if (hwrena)
2233         write_c0_hwrena(hwrena);
2234 }
2235 
2236 static void configure_exception_vector(void)
2237 {
2238     if (cpu_has_mips_r2_r6) {
2239         unsigned long sr = set_c0_status(ST0_BEV);
2240         /* If available, use WG to set top bits of EBASE */
2241         if (cpu_has_ebase_wg) {
2242 #ifdef CONFIG_64BIT
2243             write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2244 #else
2245             write_c0_ebase(ebase | MIPS_EBASE_WG);
2246 #endif
2247         }
2248         write_c0_ebase(ebase);
2249         write_c0_status(sr);
2250     }
2251     if (cpu_has_veic || cpu_has_vint) {
2252         /* Setting vector spacing enables EI/VI mode  */
2253         change_c0_intctl(0x3e0, VECTORSPACING);
2254     }
2255     if (cpu_has_divec) {
2256         if (cpu_has_mipsmt) {
2257             unsigned int vpflags = dvpe();
2258             set_c0_cause(CAUSEF_IV);
2259             evpe(vpflags);
2260         } else
2261             set_c0_cause(CAUSEF_IV);
2262     }
2263 }
2264 
2265 void per_cpu_trap_init(bool is_boot_cpu)
2266 {
2267     unsigned int cpu = smp_processor_id();
2268 
2269     configure_status();
2270     configure_hwrena();
2271 
2272     configure_exception_vector();
2273 
2274     /*
2275      * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2276      *
2277      *  o read IntCtl.IPTI to determine the timer interrupt
2278      *  o read IntCtl.IPPCI to determine the performance counter interrupt
2279      *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2280      */
2281     if (cpu_has_mips_r2_r6) {
2282         cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2283         cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2284         cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2285         cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2286         if (!cp0_fdc_irq)
2287             cp0_fdc_irq = -1;
2288 
2289     } else {
2290         cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2291         cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2292         cp0_perfcount_irq = -1;
2293         cp0_fdc_irq = -1;
2294     }
2295 
2296     if (cpu_has_mmid)
2297         cpu_data[cpu].asid_cache = 0;
2298     else if (!cpu_data[cpu].asid_cache)
2299         cpu_data[cpu].asid_cache = asid_first_version(cpu);
2300 
2301     mmgrab(&init_mm);
2302     current->active_mm = &init_mm;
2303     BUG_ON(current->mm);
2304     enter_lazy_tlb(&init_mm, current);
2305 
2306     /* Boot CPU's cache setup in setup_arch(). */
2307     if (!is_boot_cpu)
2308         cpu_cache_init();
2309     tlb_init();
2310     TLBMISS_HANDLER_SETUP();
2311 }
2312 
2313 /* Install CPU exception handler */
2314 void set_handler(unsigned long offset, const void *addr, unsigned long size)
2315 {
2316 #ifdef CONFIG_CPU_MICROMIPS
2317     memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2318 #else
2319     memcpy((void *)(ebase + offset), addr, size);
2320 #endif
2321     local_flush_icache_range(ebase + offset, ebase + offset + size);
2322 }
2323 
2324 static const char panic_null_cerr[] =
2325     "Trying to set NULL cache error exception handler\n";
2326 
2327 /*
2328  * Install uncached CPU exception handler.
2329  * This is suitable only for the cache error exception which is the only
2330  * exception handler that is being run uncached.
2331  */
2332 void set_uncached_handler(unsigned long offset, void *addr,
2333     unsigned long size)
2334 {
2335     unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2336 
2337     if (!addr)
2338         panic(panic_null_cerr);
2339 
2340     memcpy((void *)(uncached_ebase + offset), addr, size);
2341 }
2342 
2343 static int __initdata rdhwr_noopt;
2344 static int __init set_rdhwr_noopt(char *str)
2345 {
2346     rdhwr_noopt = 1;
2347     return 1;
2348 }
2349 
2350 __setup("rdhwr_noopt", set_rdhwr_noopt);
2351 
2352 void __init trap_init(void)
2353 {
2354     extern char except_vec3_generic;
2355     extern char except_vec4;
2356     extern char except_vec3_r4000;
2357     unsigned long i, vec_size;
2358     phys_addr_t ebase_pa;
2359 
2360     check_wait();
2361 
2362     if (!cpu_has_mips_r2_r6) {
2363         ebase = CAC_BASE;
2364         vec_size = 0x400;
2365     } else {
2366         if (cpu_has_veic || cpu_has_vint)
2367             vec_size = 0x200 + VECTORSPACING*64;
2368         else
2369             vec_size = PAGE_SIZE;
2370 
2371         ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2372         if (!ebase_pa)
2373             panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2374                   __func__, vec_size, 1 << fls(vec_size));
2375 
2376         /*
2377          * Try to ensure ebase resides in KSeg0 if possible.
2378          *
2379          * It shouldn't generally be in XKPhys on MIPS64 to avoid
2380          * hitting a poorly defined exception base for Cache Errors.
2381          * The allocation is likely to be in the low 512MB of physical,
2382          * in which case we should be able to convert to KSeg0.
2383          *
2384          * EVA is special though as it allows segments to be rearranged
2385          * and to become uncached during cache error handling.
2386          */
2387         if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2388             ebase = CKSEG0ADDR(ebase_pa);
2389         else
2390             ebase = (unsigned long)phys_to_virt(ebase_pa);
2391     }
2392 
2393     if (cpu_has_mmips) {
2394         unsigned int config3 = read_c0_config3();
2395 
2396         if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2397             write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2398         else
2399             write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2400     }
2401 
2402     if (board_ebase_setup)
2403         board_ebase_setup();
2404     per_cpu_trap_init(true);
2405     memblock_set_bottom_up(false);
2406 
2407     /*
2408      * Copy the generic exception handlers to their final destination.
2409      * This will be overridden later as suitable for a particular
2410      * configuration.
2411      */
2412     set_handler(0x180, &except_vec3_generic, 0x80);
2413 
2414     /*
2415      * Setup default vectors
2416      */
2417     for (i = 0; i <= 31; i++)
2418         set_except_vector(i, handle_reserved);
2419 
2420     /*
2421      * Copy the EJTAG debug exception vector handler code to it's final
2422      * destination.
2423      */
2424     if (cpu_has_ejtag && board_ejtag_handler_setup)
2425         board_ejtag_handler_setup();
2426 
2427     /*
2428      * Only some CPUs have the watch exceptions.
2429      */
2430     if (cpu_has_watch)
2431         set_except_vector(EXCCODE_WATCH, handle_watch);
2432 
2433     /*
2434      * Initialise interrupt handlers
2435      */
2436     if (cpu_has_veic || cpu_has_vint) {
2437         int nvec = cpu_has_veic ? 64 : 8;
2438         for (i = 0; i < nvec; i++)
2439             set_vi_handler(i, NULL);
2440     }
2441     else if (cpu_has_divec)
2442         set_handler(0x200, &except_vec4, 0x8);
2443 
2444     /*
2445      * Some CPUs can enable/disable for cache parity detection, but does
2446      * it different ways.
2447      */
2448     parity_protection_init();
2449 
2450     /*
2451      * The Data Bus Errors / Instruction Bus Errors are signaled
2452      * by external hardware.  Therefore these two exceptions
2453      * may have board specific handlers.
2454      */
2455     if (board_be_init)
2456         board_be_init();
2457 
2458     set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2459                     rollback_handle_int : handle_int);
2460     set_except_vector(EXCCODE_MOD, handle_tlbm);
2461     set_except_vector(EXCCODE_TLBL, handle_tlbl);
2462     set_except_vector(EXCCODE_TLBS, handle_tlbs);
2463 
2464     set_except_vector(EXCCODE_ADEL, handle_adel);
2465     set_except_vector(EXCCODE_ADES, handle_ades);
2466 
2467     set_except_vector(EXCCODE_IBE, handle_ibe);
2468     set_except_vector(EXCCODE_DBE, handle_dbe);
2469 
2470     set_except_vector(EXCCODE_SYS, handle_sys);
2471     set_except_vector(EXCCODE_BP, handle_bp);
2472 
2473     if (rdhwr_noopt)
2474         set_except_vector(EXCCODE_RI, handle_ri);
2475     else {
2476         if (cpu_has_vtag_icache)
2477             set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2478         else if (current_cpu_type() == CPU_LOONGSON64)
2479             set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2480         else
2481             set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2482     }
2483 
2484     set_except_vector(EXCCODE_CPU, handle_cpu);
2485     set_except_vector(EXCCODE_OV, handle_ov);
2486     set_except_vector(EXCCODE_TR, handle_tr);
2487     set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2488 
2489     if (board_nmi_handler_setup)
2490         board_nmi_handler_setup();
2491 
2492     if (cpu_has_fpu && !cpu_has_nofpuex)
2493         set_except_vector(EXCCODE_FPE, handle_fpe);
2494 
2495     if (cpu_has_ftlbparex)
2496         set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2497 
2498     if (cpu_has_gsexcex)
2499         set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2500 
2501     if (cpu_has_rixiex) {
2502         set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2503         set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2504     }
2505 
2506     set_except_vector(EXCCODE_MSADIS, handle_msa);
2507     set_except_vector(EXCCODE_MDMX, handle_mdmx);
2508 
2509     if (cpu_has_mcheck)
2510         set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2511 
2512     if (cpu_has_mipsmt)
2513         set_except_vector(EXCCODE_THREAD, handle_mt);
2514 
2515     set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2516 
2517     if (board_cache_error_setup)
2518         board_cache_error_setup();
2519 
2520     if (cpu_has_vce)
2521         /* Special exception: R4[04]00 uses also the divec space. */
2522         set_handler(0x180, &except_vec3_r4000, 0x100);
2523     else if (cpu_has_4kex)
2524         set_handler(0x180, &except_vec3_generic, 0x80);
2525     else
2526         set_handler(0x080, &except_vec3_generic, 0x80);
2527 
2528     local_flush_icache_range(ebase, ebase + vec_size);
2529 
2530     sort_extable(__start___dbe_table, __stop___dbe_table);
2531 
2532     cu2_notifier(default_cu2_call, 0x80000000); /* Run last  */
2533 }
2534 
2535 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2536                 void *v)
2537 {
2538     switch (cmd) {
2539     case CPU_PM_ENTER_FAILED:
2540     case CPU_PM_EXIT:
2541         configure_status();
2542         configure_hwrena();
2543         configure_exception_vector();
2544 
2545         /* Restore register with CPU number for TLB handlers */
2546         TLBMISS_HANDLER_RESTORE();
2547 
2548         break;
2549     }
2550 
2551     return NOTIFY_OK;
2552 }
2553 
2554 static struct notifier_block trap_pm_notifier_block = {
2555     .notifier_call = trap_pm_notifier,
2556 };
2557 
2558 static int __init trap_pm_init(void)
2559 {
2560     return cpu_pm_register_notifier(&trap_pm_notifier_block);
2561 }
2562 arch_initcall(trap_pm_init);