Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright (C) 2013 Imagination Technologies
0004  * Author: Paul Burton <paul.burton@mips.com>
0005  */
0006 
0007 #include <linux/cpu.h>
0008 #include <linux/delay.h>
0009 #include <linux/io.h>
0010 #include <linux/sched/task_stack.h>
0011 #include <linux/sched/hotplug.h>
0012 #include <linux/slab.h>
0013 #include <linux/smp.h>
0014 #include <linux/types.h>
0015 #include <linux/irq.h>
0016 
0017 #include <asm/bcache.h>
0018 #include <asm/mips-cps.h>
0019 #include <asm/mips_mt.h>
0020 #include <asm/mipsregs.h>
0021 #include <asm/pm-cps.h>
0022 #include <asm/r4kcache.h>
0023 #include <asm/smp-cps.h>
0024 #include <asm/time.h>
0025 #include <asm/uasm.h>
0026 
0027 static bool threads_disabled;
0028 static DECLARE_BITMAP(core_power, NR_CPUS);
0029 
0030 struct core_boot_config *mips_cps_core_bootcfg;
0031 
0032 static int __init setup_nothreads(char *s)
0033 {
0034     threads_disabled = true;
0035     return 0;
0036 }
0037 early_param("nothreads", setup_nothreads);
0038 
0039 static unsigned core_vpe_count(unsigned int cluster, unsigned core)
0040 {
0041     if (threads_disabled)
0042         return 1;
0043 
0044     return mips_cps_numvps(cluster, core);
0045 }
0046 
0047 static void __init cps_smp_setup(void)
0048 {
0049     unsigned int nclusters, ncores, nvpes, core_vpes;
0050     unsigned long core_entry;
0051     int cl, c, v;
0052 
0053     /* Detect & record VPE topology */
0054     nvpes = 0;
0055     nclusters = mips_cps_numclusters();
0056     pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
0057     for (cl = 0; cl < nclusters; cl++) {
0058         if (cl > 0)
0059             pr_cont(",");
0060         pr_cont("{");
0061 
0062         ncores = mips_cps_numcores(cl);
0063         for (c = 0; c < ncores; c++) {
0064             core_vpes = core_vpe_count(cl, c);
0065 
0066             if (c > 0)
0067                 pr_cont(",");
0068             pr_cont("%u", core_vpes);
0069 
0070             /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
0071             if (!cl && !c)
0072                 smp_num_siblings = core_vpes;
0073 
0074             for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
0075                 cpu_set_cluster(&cpu_data[nvpes + v], cl);
0076                 cpu_set_core(&cpu_data[nvpes + v], c);
0077                 cpu_set_vpe_id(&cpu_data[nvpes + v], v);
0078             }
0079 
0080             nvpes += core_vpes;
0081         }
0082 
0083         pr_cont("}");
0084     }
0085     pr_cont(" total %u\n", nvpes);
0086 
0087     /* Indicate present CPUs (CPU being synonymous with VPE) */
0088     for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
0089         set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
0090         set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
0091         __cpu_number_map[v] = v;
0092         __cpu_logical_map[v] = v;
0093     }
0094 
0095     /* Set a coherent default CCA (CWB) */
0096     change_c0_config(CONF_CM_CMASK, 0x5);
0097 
0098     /* Core 0 is powered up (we're running on it) */
0099     bitmap_set(core_power, 0, 1);
0100 
0101     /* Initialise core 0 */
0102     mips_cps_core_init();
0103 
0104     /* Make core 0 coherent with everything */
0105     write_gcr_cl_coherence(0xff);
0106 
0107     if (mips_cm_revision() >= CM_REV_CM3) {
0108         core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
0109         write_gcr_bev_base(core_entry);
0110     }
0111 
0112 #ifdef CONFIG_MIPS_MT_FPAFF
0113     /* If we have an FPU, enroll ourselves in the FPU-full mask */
0114     if (cpu_has_fpu)
0115         cpumask_set_cpu(0, &mt_fpu_cpumask);
0116 #endif /* CONFIG_MIPS_MT_FPAFF */
0117 }
0118 
0119 static void __init cps_prepare_cpus(unsigned int max_cpus)
0120 {
0121     unsigned ncores, core_vpes, c, cca;
0122     bool cca_unsuitable, cores_limited;
0123     u32 *entry_code;
0124 
0125     mips_mt_set_cpuoptions();
0126 
0127     /* Detect whether the CCA is unsuited to multi-core SMP */
0128     cca = read_c0_config() & CONF_CM_CMASK;
0129     switch (cca) {
0130     case 0x4: /* CWBE */
0131     case 0x5: /* CWB */
0132         /* The CCA is coherent, multi-core is fine */
0133         cca_unsuitable = false;
0134         break;
0135 
0136     default:
0137         /* CCA is not coherent, multi-core is not usable */
0138         cca_unsuitable = true;
0139     }
0140 
0141     /* Warn the user if the CCA prevents multi-core */
0142     cores_limited = false;
0143     if (cca_unsuitable || cpu_has_dc_aliases) {
0144         for_each_present_cpu(c) {
0145             if (cpus_are_siblings(smp_processor_id(), c))
0146                 continue;
0147 
0148             set_cpu_present(c, false);
0149             cores_limited = true;
0150         }
0151     }
0152     if (cores_limited)
0153         pr_warn("Using only one core due to %s%s%s\n",
0154             cca_unsuitable ? "unsuitable CCA" : "",
0155             (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
0156             cpu_has_dc_aliases ? "dcache aliasing" : "");
0157 
0158     /*
0159      * Patch the start of mips_cps_core_entry to provide:
0160      *
0161      * s0 = kseg0 CCA
0162      */
0163     entry_code = (u32 *)&mips_cps_core_entry;
0164     uasm_i_addiu(&entry_code, 16, 0, cca);
0165     blast_dcache_range((unsigned long)&mips_cps_core_entry,
0166                (unsigned long)entry_code);
0167     bc_wback_inv((unsigned long)&mips_cps_core_entry,
0168              (void *)entry_code - (void *)&mips_cps_core_entry);
0169     __sync();
0170 
0171     /* Allocate core boot configuration structs */
0172     ncores = mips_cps_numcores(0);
0173     mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
0174                     GFP_KERNEL);
0175     if (!mips_cps_core_bootcfg) {
0176         pr_err("Failed to allocate boot config for %u cores\n", ncores);
0177         goto err_out;
0178     }
0179 
0180     /* Allocate VPE boot configuration structs */
0181     for (c = 0; c < ncores; c++) {
0182         core_vpes = core_vpe_count(0, c);
0183         mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
0184                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
0185                 GFP_KERNEL);
0186         if (!mips_cps_core_bootcfg[c].vpe_config) {
0187             pr_err("Failed to allocate %u VPE boot configs\n",
0188                    core_vpes);
0189             goto err_out;
0190         }
0191     }
0192 
0193     /* Mark this CPU as booted */
0194     atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
0195            1 << cpu_vpe_id(&current_cpu_data));
0196 
0197     return;
0198 err_out:
0199     /* Clean up allocations */
0200     if (mips_cps_core_bootcfg) {
0201         for (c = 0; c < ncores; c++)
0202             kfree(mips_cps_core_bootcfg[c].vpe_config);
0203         kfree(mips_cps_core_bootcfg);
0204         mips_cps_core_bootcfg = NULL;
0205     }
0206 
0207     /* Effectively disable SMP by declaring CPUs not present */
0208     for_each_possible_cpu(c) {
0209         if (c == 0)
0210             continue;
0211         set_cpu_present(c, false);
0212     }
0213 }
0214 
0215 static void boot_core(unsigned int core, unsigned int vpe_id)
0216 {
0217     u32 stat, seq_state;
0218     unsigned timeout;
0219 
0220     /* Select the appropriate core */
0221     mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
0222 
0223     /* Set its reset vector */
0224     write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
0225 
0226     /* Ensure its coherency is disabled */
0227     write_gcr_co_coherence(0);
0228 
0229     /* Start it with the legacy memory map and exception base */
0230     write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
0231 
0232     /* Ensure the core can access the GCRs */
0233     set_gcr_access(1 << core);
0234 
0235     if (mips_cpc_present()) {
0236         /* Reset the core */
0237         mips_cpc_lock_other(core);
0238 
0239         if (mips_cm_revision() >= CM_REV_CM3) {
0240             /* Run only the requested VP following the reset */
0241             write_cpc_co_vp_stop(0xf);
0242             write_cpc_co_vp_run(1 << vpe_id);
0243 
0244             /*
0245              * Ensure that the VP_RUN register is written before the
0246              * core leaves reset.
0247              */
0248             wmb();
0249         }
0250 
0251         write_cpc_co_cmd(CPC_Cx_CMD_RESET);
0252 
0253         timeout = 100;
0254         while (true) {
0255             stat = read_cpc_co_stat_conf();
0256             seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
0257             seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
0258 
0259             /* U6 == coherent execution, ie. the core is up */
0260             if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
0261                 break;
0262 
0263             /* Delay a little while before we start warning */
0264             if (timeout) {
0265                 timeout--;
0266                 mdelay(10);
0267                 continue;
0268             }
0269 
0270             pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
0271                 core, stat);
0272             mdelay(1000);
0273         }
0274 
0275         mips_cpc_unlock_other();
0276     } else {
0277         /* Take the core out of reset */
0278         write_gcr_co_reset_release(0);
0279     }
0280 
0281     mips_cm_unlock_other();
0282 
0283     /* The core is now powered up */
0284     bitmap_set(core_power, core, 1);
0285 }
0286 
0287 static void remote_vpe_boot(void *dummy)
0288 {
0289     unsigned core = cpu_core(&current_cpu_data);
0290     struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
0291 
0292     mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
0293 }
0294 
0295 static int cps_boot_secondary(int cpu, struct task_struct *idle)
0296 {
0297     unsigned core = cpu_core(&cpu_data[cpu]);
0298     unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
0299     struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
0300     struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
0301     unsigned long core_entry;
0302     unsigned int remote;
0303     int err;
0304 
0305     /* We don't yet support booting CPUs in other clusters */
0306     if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
0307         return -ENOSYS;
0308 
0309     vpe_cfg->pc = (unsigned long)&smp_bootstrap;
0310     vpe_cfg->sp = __KSTK_TOS(idle);
0311     vpe_cfg->gp = (unsigned long)task_thread_info(idle);
0312 
0313     atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
0314 
0315     preempt_disable();
0316 
0317     if (!test_bit(core, core_power)) {
0318         /* Boot a VPE on a powered down core */
0319         boot_core(core, vpe_id);
0320         goto out;
0321     }
0322 
0323     if (cpu_has_vp) {
0324         mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
0325         core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
0326         write_gcr_co_reset_base(core_entry);
0327         mips_cm_unlock_other();
0328     }
0329 
0330     if (!cpus_are_siblings(cpu, smp_processor_id())) {
0331         /* Boot a VPE on another powered up core */
0332         for (remote = 0; remote < NR_CPUS; remote++) {
0333             if (!cpus_are_siblings(cpu, remote))
0334                 continue;
0335             if (cpu_online(remote))
0336                 break;
0337         }
0338         if (remote >= NR_CPUS) {
0339             pr_crit("No online CPU in core %u to start CPU%d\n",
0340                 core, cpu);
0341             goto out;
0342         }
0343 
0344         err = smp_call_function_single(remote, remote_vpe_boot,
0345                            NULL, 1);
0346         if (err)
0347             panic("Failed to call remote CPU\n");
0348         goto out;
0349     }
0350 
0351     BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
0352 
0353     /* Boot a VPE on this core */
0354     mips_cps_boot_vpes(core_cfg, vpe_id);
0355 out:
0356     preempt_enable();
0357     return 0;
0358 }
0359 
0360 static void cps_init_secondary(void)
0361 {
0362     /* Disable MT - we only want to run 1 TC per VPE */
0363     if (cpu_has_mipsmt)
0364         dmt();
0365 
0366     if (mips_cm_revision() >= CM_REV_CM3) {
0367         unsigned int ident = read_gic_vl_ident();
0368 
0369         /*
0370          * Ensure that our calculation of the VP ID matches up with
0371          * what the GIC reports, otherwise we'll have configured
0372          * interrupts incorrectly.
0373          */
0374         BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
0375     }
0376 
0377     if (cpu_has_veic)
0378         clear_c0_status(ST0_IM);
0379     else
0380         change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
0381                      STATUSF_IP4 | STATUSF_IP5 |
0382                      STATUSF_IP6 | STATUSF_IP7);
0383 }
0384 
0385 static void cps_smp_finish(void)
0386 {
0387     write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
0388 
0389 #ifdef CONFIG_MIPS_MT_FPAFF
0390     /* If we have an FPU, enroll ourselves in the FPU-full mask */
0391     if (cpu_has_fpu)
0392         cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
0393 #endif /* CONFIG_MIPS_MT_FPAFF */
0394 
0395     local_irq_enable();
0396 }
0397 
0398 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
0399 
0400 enum cpu_death {
0401     CPU_DEATH_HALT,
0402     CPU_DEATH_POWER,
0403 };
0404 
0405 static void cps_shutdown_this_cpu(enum cpu_death death)
0406 {
0407     unsigned int cpu, core, vpe_id;
0408 
0409     cpu = smp_processor_id();
0410     core = cpu_core(&cpu_data[cpu]);
0411 
0412     if (death == CPU_DEATH_HALT) {
0413         vpe_id = cpu_vpe_id(&cpu_data[cpu]);
0414 
0415         pr_debug("Halting core %d VP%d\n", core, vpe_id);
0416         if (cpu_has_mipsmt) {
0417             /* Halt this TC */
0418             write_c0_tchalt(TCHALT_H);
0419             instruction_hazard();
0420         } else if (cpu_has_vp) {
0421             write_cpc_cl_vp_stop(1 << vpe_id);
0422 
0423             /* Ensure that the VP_STOP register is written */
0424             wmb();
0425         }
0426     } else {
0427         pr_debug("Gating power to core %d\n", core);
0428         /* Power down the core */
0429         cps_pm_enter_state(CPS_PM_POWER_GATED);
0430     }
0431 }
0432 
0433 #ifdef CONFIG_KEXEC
0434 
0435 static void cps_kexec_nonboot_cpu(void)
0436 {
0437     if (cpu_has_mipsmt || cpu_has_vp)
0438         cps_shutdown_this_cpu(CPU_DEATH_HALT);
0439     else
0440         cps_shutdown_this_cpu(CPU_DEATH_POWER);
0441 }
0442 
0443 #endif /* CONFIG_KEXEC */
0444 
0445 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
0446 
0447 #ifdef CONFIG_HOTPLUG_CPU
0448 
0449 static int cps_cpu_disable(void)
0450 {
0451     unsigned cpu = smp_processor_id();
0452     struct core_boot_config *core_cfg;
0453 
0454     if (!cps_pm_support_state(CPS_PM_POWER_GATED))
0455         return -EINVAL;
0456 
0457     core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
0458     atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
0459     smp_mb__after_atomic();
0460     set_cpu_online(cpu, false);
0461     calculate_cpu_foreign_map();
0462     irq_migrate_all_off_this_cpu();
0463 
0464     return 0;
0465 }
0466 
0467 static unsigned cpu_death_sibling;
0468 static enum cpu_death cpu_death;
0469 
0470 void play_dead(void)
0471 {
0472     unsigned int cpu;
0473 
0474     local_irq_disable();
0475     idle_task_exit();
0476     cpu = smp_processor_id();
0477     cpu_death = CPU_DEATH_POWER;
0478 
0479     pr_debug("CPU%d going offline\n", cpu);
0480 
0481     if (cpu_has_mipsmt || cpu_has_vp) {
0482         /* Look for another online VPE within the core */
0483         for_each_online_cpu(cpu_death_sibling) {
0484             if (!cpus_are_siblings(cpu, cpu_death_sibling))
0485                 continue;
0486 
0487             /*
0488              * There is an online VPE within the core. Just halt
0489              * this TC and leave the core alone.
0490              */
0491             cpu_death = CPU_DEATH_HALT;
0492             break;
0493         }
0494     }
0495 
0496     /* This CPU has chosen its way out */
0497     (void)cpu_report_death();
0498 
0499     cps_shutdown_this_cpu(cpu_death);
0500 
0501     /* This should never be reached */
0502     panic("Failed to offline CPU %u", cpu);
0503 }
0504 
0505 static void wait_for_sibling_halt(void *ptr_cpu)
0506 {
0507     unsigned cpu = (unsigned long)ptr_cpu;
0508     unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
0509     unsigned halted;
0510     unsigned long flags;
0511 
0512     do {
0513         local_irq_save(flags);
0514         settc(vpe_id);
0515         halted = read_tc_c0_tchalt();
0516         local_irq_restore(flags);
0517     } while (!(halted & TCHALT_H));
0518 }
0519 
0520 static void cps_cpu_die(unsigned int cpu)
0521 {
0522     unsigned core = cpu_core(&cpu_data[cpu]);
0523     unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
0524     ktime_t fail_time;
0525     unsigned stat;
0526     int err;
0527 
0528     /* Wait for the cpu to choose its way out */
0529     if (!cpu_wait_death(cpu, 5)) {
0530         pr_err("CPU%u: didn't offline\n", cpu);
0531         return;
0532     }
0533 
0534     /*
0535      * Now wait for the CPU to actually offline. Without doing this that
0536      * offlining may race with one or more of:
0537      *
0538      *   - Onlining the CPU again.
0539      *   - Powering down the core if another VPE within it is offlined.
0540      *   - A sibling VPE entering a non-coherent state.
0541      *
0542      * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
0543      * with which we could race, so do nothing.
0544      */
0545     if (cpu_death == CPU_DEATH_POWER) {
0546         /*
0547          * Wait for the core to enter a powered down or clock gated
0548          * state, the latter happening when a JTAG probe is connected
0549          * in which case the CPC will refuse to power down the core.
0550          */
0551         fail_time = ktime_add_ms(ktime_get(), 2000);
0552         do {
0553             mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
0554             mips_cpc_lock_other(core);
0555             stat = read_cpc_co_stat_conf();
0556             stat &= CPC_Cx_STAT_CONF_SEQSTATE;
0557             stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
0558             mips_cpc_unlock_other();
0559             mips_cm_unlock_other();
0560 
0561             if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
0562                 stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
0563                 stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
0564                 break;
0565 
0566             /*
0567              * The core ought to have powered down, but didn't &
0568              * now we don't really know what state it's in. It's
0569              * likely that its _pwr_up pin has been wired to logic
0570              * 1 & it powered back up as soon as we powered it
0571              * down...
0572              *
0573              * The best we can do is warn the user & continue in
0574              * the hope that the core is doing nothing harmful &
0575              * might behave properly if we online it later.
0576              */
0577             if (WARN(ktime_after(ktime_get(), fail_time),
0578                  "CPU%u hasn't powered down, seq. state %u\n",
0579                  cpu, stat))
0580                 break;
0581         } while (1);
0582 
0583         /* Indicate the core is powered off */
0584         bitmap_clear(core_power, core, 1);
0585     } else if (cpu_has_mipsmt) {
0586         /*
0587          * Have a CPU with access to the offlined CPUs registers wait
0588          * for its TC to halt.
0589          */
0590         err = smp_call_function_single(cpu_death_sibling,
0591                            wait_for_sibling_halt,
0592                            (void *)(unsigned long)cpu, 1);
0593         if (err)
0594             panic("Failed to call remote sibling CPU\n");
0595     } else if (cpu_has_vp) {
0596         do {
0597             mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
0598             stat = read_cpc_co_vp_running();
0599             mips_cm_unlock_other();
0600         } while (stat & (1 << vpe_id));
0601     }
0602 }
0603 
0604 #endif /* CONFIG_HOTPLUG_CPU */
0605 
0606 static const struct plat_smp_ops cps_smp_ops = {
0607     .smp_setup      = cps_smp_setup,
0608     .prepare_cpus       = cps_prepare_cpus,
0609     .boot_secondary     = cps_boot_secondary,
0610     .init_secondary     = cps_init_secondary,
0611     .smp_finish     = cps_smp_finish,
0612     .send_ipi_single    = mips_smp_send_ipi_single,
0613     .send_ipi_mask      = mips_smp_send_ipi_mask,
0614 #ifdef CONFIG_HOTPLUG_CPU
0615     .cpu_disable        = cps_cpu_disable,
0616     .cpu_die        = cps_cpu_die,
0617 #endif
0618 #ifdef CONFIG_KEXEC
0619     .kexec_nonboot_cpu  = cps_kexec_nonboot_cpu,
0620 #endif
0621 };
0622 
0623 bool mips_cps_smp_in_use(void)
0624 {
0625     extern const struct plat_smp_ops *mp_ops;
0626     return mp_ops == &cps_smp_ops;
0627 }
0628 
0629 int register_cps_smp_ops(void)
0630 {
0631     if (!mips_cm_present()) {
0632         pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
0633         return -ENODEV;
0634     }
0635 
0636     /* check we have a GIC - we need one for IPIs */
0637     if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
0638         pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
0639         return -ENODEV;
0640     }
0641 
0642     register_smp_ops(&cps_smp_ops);
0643     return 0;
0644 }