Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Linux performance counter support for MIPS.
0004  *
0005  * Copyright (C) 2010 MIPS Technologies, Inc.
0006  * Copyright (C) 2011 Cavium Networks, Inc.
0007  * Author: Deng-Cheng Zhu
0008  *
0009  * This code is based on the implementation for ARM, which is in turn
0010  * based on the sparc64 perf event code and the x86 code. Performance
0011  * counter access is based on the MIPS Oprofile code. And the callchain
0012  * support references the code of MIPS stacktrace.c.
0013  */
0014 
0015 #include <linux/cpumask.h>
0016 #include <linux/interrupt.h>
0017 #include <linux/smp.h>
0018 #include <linux/kernel.h>
0019 #include <linux/perf_event.h>
0020 #include <linux/uaccess.h>
0021 
0022 #include <asm/irq.h>
0023 #include <asm/irq_regs.h>
0024 #include <asm/stacktrace.h>
0025 #include <asm/time.h> /* For perf_irq */
0026 
0027 #define MIPS_MAX_HWEVENTS 4
0028 #define MIPS_TCS_PER_COUNTER 2
0029 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
0030 
0031 struct cpu_hw_events {
0032     /* Array of events on this cpu. */
0033     struct perf_event   *events[MIPS_MAX_HWEVENTS];
0034 
0035     /*
0036      * Set the bit (indexed by the counter number) when the counter
0037      * is used for an event.
0038      */
0039     unsigned long       used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
0040 
0041     /*
0042      * Software copy of the control register for each performance counter.
0043      * MIPS CPUs vary in performance counters. They use this differently,
0044      * and even may not use it.
0045      */
0046     unsigned int        saved_ctrl[MIPS_MAX_HWEVENTS];
0047 };
0048 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
0049     .saved_ctrl = {0},
0050 };
0051 
0052 /* The description of MIPS performance events. */
0053 struct mips_perf_event {
0054     unsigned int event_id;
0055     /*
0056      * MIPS performance counters are indexed starting from 0.
0057      * CNTR_EVEN indicates the indexes of the counters to be used are
0058      * even numbers.
0059      */
0060     unsigned int cntr_mask;
0061     #define CNTR_EVEN   0x55555555
0062     #define CNTR_ODD    0xaaaaaaaa
0063     #define CNTR_ALL    0xffffffff
0064     enum {
0065         T  = 0,
0066         V  = 1,
0067         P  = 2,
0068     } range;
0069 };
0070 
0071 static struct mips_perf_event raw_event;
0072 static DEFINE_MUTEX(raw_event_mutex);
0073 
0074 #define C(x) PERF_COUNT_HW_CACHE_##x
0075 
0076 struct mips_pmu {
0077     u64     max_period;
0078     u64     valid_count;
0079     u64     overflow;
0080     const char  *name;
0081     int     irq;
0082     u64     (*read_counter)(unsigned int idx);
0083     void        (*write_counter)(unsigned int idx, u64 val);
0084     const struct mips_perf_event *(*map_raw_event)(u64 config);
0085     const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
0086     const struct mips_perf_event (*cache_event_map)
0087                 [PERF_COUNT_HW_CACHE_MAX]
0088                 [PERF_COUNT_HW_CACHE_OP_MAX]
0089                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
0090     unsigned int    num_counters;
0091 };
0092 
0093 static int counter_bits;
0094 static struct mips_pmu mipspmu;
0095 
0096 #define M_PERFCTL_EVENT(event)      (((event) << MIPS_PERFCTRL_EVENT_S) & \
0097                      MIPS_PERFCTRL_EVENT)
0098 #define M_PERFCTL_VPEID(vpe)        ((vpe)    << MIPS_PERFCTRL_VPEID_S)
0099 
0100 #ifdef CONFIG_CPU_BMIPS5000
0101 #define M_PERFCTL_MT_EN(filter)     0
0102 #else /* !CONFIG_CPU_BMIPS5000 */
0103 #define M_PERFCTL_MT_EN(filter)     (filter)
0104 #endif /* CONFIG_CPU_BMIPS5000 */
0105 
0106 #define    M_TC_EN_ALL          M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
0107 #define    M_TC_EN_VPE          M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
0108 #define    M_TC_EN_TC           M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
0109 
0110 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (MIPS_PERFCTRL_EXL |        \
0111                      MIPS_PERFCTRL_K |      \
0112                      MIPS_PERFCTRL_U |      \
0113                      MIPS_PERFCTRL_S |      \
0114                      MIPS_PERFCTRL_IE)
0115 
0116 #ifdef CONFIG_MIPS_MT_SMP
0117 #define M_PERFCTL_CONFIG_MASK       0x3fff801f
0118 #else
0119 #define M_PERFCTL_CONFIG_MASK       0x1f
0120 #endif
0121 
0122 #define CNTR_BIT_MASK(n)    (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
0123 
0124 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
0125 static DEFINE_RWLOCK(pmuint_rwlock);
0126 
0127 #if defined(CONFIG_CPU_BMIPS5000)
0128 #define vpe_id()    (cpu_has_mipsmt_pertccounters ? \
0129              0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
0130 #else
0131 #define vpe_id()    (cpu_has_mipsmt_pertccounters ? \
0132              0 : cpu_vpe_id(&current_cpu_data))
0133 #endif
0134 
0135 /* Copied from op_model_mipsxx.c */
0136 static unsigned int vpe_shift(void)
0137 {
0138     if (num_possible_cpus() > 1)
0139         return 1;
0140 
0141     return 0;
0142 }
0143 
0144 static unsigned int counters_total_to_per_cpu(unsigned int counters)
0145 {
0146     return counters >> vpe_shift();
0147 }
0148 
0149 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
0150 #define vpe_id()    0
0151 
0152 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
0153 
0154 static void resume_local_counters(void);
0155 static void pause_local_counters(void);
0156 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
0157 static int mipsxx_pmu_handle_shared_irq(void);
0158 
0159 /* 0: Not Loongson-3
0160  * 1: Loongson-3A1000/3B1000/3B1500
0161  * 2: Loongson-3A2000/3A3000
0162  * 3: Loongson-3A4000+
0163  */
0164 
0165 #define LOONGSON_PMU_TYPE0 0
0166 #define LOONGSON_PMU_TYPE1 1
0167 #define LOONGSON_PMU_TYPE2 2
0168 #define LOONGSON_PMU_TYPE3 3
0169 
0170 static inline int get_loongson3_pmu_type(void)
0171 {
0172     if (boot_cpu_type() != CPU_LOONGSON64)
0173         return LOONGSON_PMU_TYPE0;
0174     if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
0175         return LOONGSON_PMU_TYPE1;
0176     if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
0177         return LOONGSON_PMU_TYPE2;
0178     if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
0179         return LOONGSON_PMU_TYPE3;
0180 
0181     return LOONGSON_PMU_TYPE0;
0182 }
0183 
0184 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
0185 {
0186     if (vpe_id() == 1)
0187         idx = (idx + 2) & 3;
0188     return idx;
0189 }
0190 
0191 static u64 mipsxx_pmu_read_counter(unsigned int idx)
0192 {
0193     idx = mipsxx_pmu_swizzle_perf_idx(idx);
0194 
0195     switch (idx) {
0196     case 0:
0197         /*
0198          * The counters are unsigned, we must cast to truncate
0199          * off the high bits.
0200          */
0201         return (u32)read_c0_perfcntr0();
0202     case 1:
0203         return (u32)read_c0_perfcntr1();
0204     case 2:
0205         return (u32)read_c0_perfcntr2();
0206     case 3:
0207         return (u32)read_c0_perfcntr3();
0208     default:
0209         WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
0210         return 0;
0211     }
0212 }
0213 
0214 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
0215 {
0216     u64 mask = CNTR_BIT_MASK(counter_bits);
0217     idx = mipsxx_pmu_swizzle_perf_idx(idx);
0218 
0219     switch (idx) {
0220     case 0:
0221         return read_c0_perfcntr0_64() & mask;
0222     case 1:
0223         return read_c0_perfcntr1_64() & mask;
0224     case 2:
0225         return read_c0_perfcntr2_64() & mask;
0226     case 3:
0227         return read_c0_perfcntr3_64() & mask;
0228     default:
0229         WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
0230         return 0;
0231     }
0232 }
0233 
0234 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
0235 {
0236     idx = mipsxx_pmu_swizzle_perf_idx(idx);
0237 
0238     switch (idx) {
0239     case 0:
0240         write_c0_perfcntr0(val);
0241         return;
0242     case 1:
0243         write_c0_perfcntr1(val);
0244         return;
0245     case 2:
0246         write_c0_perfcntr2(val);
0247         return;
0248     case 3:
0249         write_c0_perfcntr3(val);
0250         return;
0251     }
0252 }
0253 
0254 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
0255 {
0256     val &= CNTR_BIT_MASK(counter_bits);
0257     idx = mipsxx_pmu_swizzle_perf_idx(idx);
0258 
0259     switch (idx) {
0260     case 0:
0261         write_c0_perfcntr0_64(val);
0262         return;
0263     case 1:
0264         write_c0_perfcntr1_64(val);
0265         return;
0266     case 2:
0267         write_c0_perfcntr2_64(val);
0268         return;
0269     case 3:
0270         write_c0_perfcntr3_64(val);
0271         return;
0272     }
0273 }
0274 
0275 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
0276 {
0277     idx = mipsxx_pmu_swizzle_perf_idx(idx);
0278 
0279     switch (idx) {
0280     case 0:
0281         return read_c0_perfctrl0();
0282     case 1:
0283         return read_c0_perfctrl1();
0284     case 2:
0285         return read_c0_perfctrl2();
0286     case 3:
0287         return read_c0_perfctrl3();
0288     default:
0289         WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
0290         return 0;
0291     }
0292 }
0293 
0294 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
0295 {
0296     idx = mipsxx_pmu_swizzle_perf_idx(idx);
0297 
0298     switch (idx) {
0299     case 0:
0300         write_c0_perfctrl0(val);
0301         return;
0302     case 1:
0303         write_c0_perfctrl1(val);
0304         return;
0305     case 2:
0306         write_c0_perfctrl2(val);
0307         return;
0308     case 3:
0309         write_c0_perfctrl3(val);
0310         return;
0311     }
0312 }
0313 
0314 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
0315                     struct hw_perf_event *hwc)
0316 {
0317     int i;
0318     unsigned long cntr_mask;
0319 
0320     /*
0321      * We only need to care the counter mask. The range has been
0322      * checked definitely.
0323      */
0324     if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
0325         cntr_mask = (hwc->event_base >> 10) & 0xffff;
0326     else
0327         cntr_mask = (hwc->event_base >> 8) & 0xffff;
0328 
0329     for (i = mipspmu.num_counters - 1; i >= 0; i--) {
0330         /*
0331          * Note that some MIPS perf events can be counted by both
0332          * even and odd counters, whereas many other are only by
0333          * even _or_ odd counters. This introduces an issue that
0334          * when the former kind of event takes the counter the
0335          * latter kind of event wants to use, then the "counter
0336          * allocation" for the latter event will fail. In fact if
0337          * they can be dynamically swapped, they both feel happy.
0338          * But here we leave this issue alone for now.
0339          */
0340         if (test_bit(i, &cntr_mask) &&
0341             !test_and_set_bit(i, cpuc->used_mask))
0342             return i;
0343     }
0344 
0345     return -EAGAIN;
0346 }
0347 
0348 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
0349 {
0350     struct perf_event *event = container_of(evt, struct perf_event, hw);
0351     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
0352     unsigned int range = evt->event_base >> 24;
0353 
0354     WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
0355 
0356     if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
0357         cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
0358             (evt->config_base & M_PERFCTL_CONFIG_MASK) |
0359             /* Make sure interrupt enabled. */
0360             MIPS_PERFCTRL_IE;
0361     else
0362         cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
0363             (evt->config_base & M_PERFCTL_CONFIG_MASK) |
0364             /* Make sure interrupt enabled. */
0365             MIPS_PERFCTRL_IE;
0366 
0367     if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
0368         /* enable the counter for the calling thread */
0369         cpuc->saved_ctrl[idx] |=
0370             (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
0371     } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
0372         /* The counter is processor wide. Set it up to count all TCs. */
0373         pr_debug("Enabling perf counter for all TCs\n");
0374         cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
0375     } else {
0376         unsigned int cpu, ctrl;
0377 
0378         /*
0379          * Set up the counter for a particular CPU when event->cpu is
0380          * a valid CPU number. Otherwise set up the counter for the CPU
0381          * scheduling this thread.
0382          */
0383         cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
0384 
0385         ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
0386         ctrl |= M_TC_EN_VPE;
0387         cpuc->saved_ctrl[idx] |= ctrl;
0388         pr_debug("Enabling perf counter for CPU%d\n", cpu);
0389     }
0390     /*
0391      * We do not actually let the counter run. Leave it until start().
0392      */
0393 }
0394 
0395 static void mipsxx_pmu_disable_event(int idx)
0396 {
0397     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
0398     unsigned long flags;
0399 
0400     WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
0401 
0402     local_irq_save(flags);
0403     cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
0404         ~M_PERFCTL_COUNT_EVENT_WHENEVER;
0405     mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
0406     local_irq_restore(flags);
0407 }
0408 
0409 static int mipspmu_event_set_period(struct perf_event *event,
0410                     struct hw_perf_event *hwc,
0411                     int idx)
0412 {
0413     u64 left = local64_read(&hwc->period_left);
0414     u64 period = hwc->sample_period;
0415     int ret = 0;
0416 
0417     if (unlikely((left + period) & (1ULL << 63))) {
0418         /* left underflowed by more than period. */
0419         left = period;
0420         local64_set(&hwc->period_left, left);
0421         hwc->last_period = period;
0422         ret = 1;
0423     } else  if (unlikely((left + period) <= period)) {
0424         /* left underflowed by less than period. */
0425         left += period;
0426         local64_set(&hwc->period_left, left);
0427         hwc->last_period = period;
0428         ret = 1;
0429     }
0430 
0431     if (left > mipspmu.max_period) {
0432         left = mipspmu.max_period;
0433         local64_set(&hwc->period_left, left);
0434     }
0435 
0436     local64_set(&hwc->prev_count, mipspmu.overflow - left);
0437 
0438     if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
0439         mipsxx_pmu_write_control(idx,
0440                 M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
0441 
0442     mipspmu.write_counter(idx, mipspmu.overflow - left);
0443 
0444     perf_event_update_userpage(event);
0445 
0446     return ret;
0447 }
0448 
0449 static void mipspmu_event_update(struct perf_event *event,
0450                  struct hw_perf_event *hwc,
0451                  int idx)
0452 {
0453     u64 prev_raw_count, new_raw_count;
0454     u64 delta;
0455 
0456 again:
0457     prev_raw_count = local64_read(&hwc->prev_count);
0458     new_raw_count = mipspmu.read_counter(idx);
0459 
0460     if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
0461                 new_raw_count) != prev_raw_count)
0462         goto again;
0463 
0464     delta = new_raw_count - prev_raw_count;
0465 
0466     local64_add(delta, &event->count);
0467     local64_sub(delta, &hwc->period_left);
0468 }
0469 
0470 static void mipspmu_start(struct perf_event *event, int flags)
0471 {
0472     struct hw_perf_event *hwc = &event->hw;
0473 
0474     if (flags & PERF_EF_RELOAD)
0475         WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
0476 
0477     hwc->state = 0;
0478 
0479     /* Set the period for the event. */
0480     mipspmu_event_set_period(event, hwc, hwc->idx);
0481 
0482     /* Enable the event. */
0483     mipsxx_pmu_enable_event(hwc, hwc->idx);
0484 }
0485 
0486 static void mipspmu_stop(struct perf_event *event, int flags)
0487 {
0488     struct hw_perf_event *hwc = &event->hw;
0489 
0490     if (!(hwc->state & PERF_HES_STOPPED)) {
0491         /* We are working on a local event. */
0492         mipsxx_pmu_disable_event(hwc->idx);
0493         barrier();
0494         mipspmu_event_update(event, hwc, hwc->idx);
0495         hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
0496     }
0497 }
0498 
0499 static int mipspmu_add(struct perf_event *event, int flags)
0500 {
0501     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
0502     struct hw_perf_event *hwc = &event->hw;
0503     int idx;
0504     int err = 0;
0505 
0506     perf_pmu_disable(event->pmu);
0507 
0508     /* To look for a free counter for this event. */
0509     idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
0510     if (idx < 0) {
0511         err = idx;
0512         goto out;
0513     }
0514 
0515     /*
0516      * If there is an event in the counter we are going to use then
0517      * make sure it is disabled.
0518      */
0519     event->hw.idx = idx;
0520     mipsxx_pmu_disable_event(idx);
0521     cpuc->events[idx] = event;
0522 
0523     hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
0524     if (flags & PERF_EF_START)
0525         mipspmu_start(event, PERF_EF_RELOAD);
0526 
0527     /* Propagate our changes to the userspace mapping. */
0528     perf_event_update_userpage(event);
0529 
0530 out:
0531     perf_pmu_enable(event->pmu);
0532     return err;
0533 }
0534 
0535 static void mipspmu_del(struct perf_event *event, int flags)
0536 {
0537     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
0538     struct hw_perf_event *hwc = &event->hw;
0539     int idx = hwc->idx;
0540 
0541     WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
0542 
0543     mipspmu_stop(event, PERF_EF_UPDATE);
0544     cpuc->events[idx] = NULL;
0545     clear_bit(idx, cpuc->used_mask);
0546 
0547     perf_event_update_userpage(event);
0548 }
0549 
0550 static void mipspmu_read(struct perf_event *event)
0551 {
0552     struct hw_perf_event *hwc = &event->hw;
0553 
0554     /* Don't read disabled counters! */
0555     if (hwc->idx < 0)
0556         return;
0557 
0558     mipspmu_event_update(event, hwc, hwc->idx);
0559 }
0560 
0561 static void mipspmu_enable(struct pmu *pmu)
0562 {
0563 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
0564     write_unlock(&pmuint_rwlock);
0565 #endif
0566     resume_local_counters();
0567 }
0568 
0569 /*
0570  * MIPS performance counters can be per-TC. The control registers can
0571  * not be directly accessed across CPUs. Hence if we want to do global
0572  * control, we need cross CPU calls. on_each_cpu() can help us, but we
0573  * can not make sure this function is called with interrupts enabled. So
0574  * here we pause local counters and then grab a rwlock and leave the
0575  * counters on other CPUs alone. If any counter interrupt raises while
0576  * we own the write lock, simply pause local counters on that CPU and
0577  * spin in the handler. Also we know we won't be switched to another
0578  * CPU after pausing local counters and before grabbing the lock.
0579  */
0580 static void mipspmu_disable(struct pmu *pmu)
0581 {
0582     pause_local_counters();
0583 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
0584     write_lock(&pmuint_rwlock);
0585 #endif
0586 }
0587 
0588 static atomic_t active_events = ATOMIC_INIT(0);
0589 static DEFINE_MUTEX(pmu_reserve_mutex);
0590 static int (*save_perf_irq)(void);
0591 
0592 static int mipspmu_get_irq(void)
0593 {
0594     int err;
0595 
0596     if (mipspmu.irq >= 0) {
0597         /* Request my own irq handler. */
0598         err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
0599                   IRQF_PERCPU | IRQF_NOBALANCING |
0600                   IRQF_NO_THREAD | IRQF_NO_SUSPEND |
0601                   IRQF_SHARED,
0602                   "mips_perf_pmu", &mipspmu);
0603         if (err) {
0604             pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
0605                 mipspmu.irq);
0606         }
0607     } else if (cp0_perfcount_irq < 0) {
0608         /*
0609          * We are sharing the irq number with the timer interrupt.
0610          */
0611         save_perf_irq = perf_irq;
0612         perf_irq = mipsxx_pmu_handle_shared_irq;
0613         err = 0;
0614     } else {
0615         pr_warn("The platform hasn't properly defined its interrupt controller\n");
0616         err = -ENOENT;
0617     }
0618 
0619     return err;
0620 }
0621 
0622 static void mipspmu_free_irq(void)
0623 {
0624     if (mipspmu.irq >= 0)
0625         free_irq(mipspmu.irq, &mipspmu);
0626     else if (cp0_perfcount_irq < 0)
0627         perf_irq = save_perf_irq;
0628 }
0629 
0630 /*
0631  * mipsxx/rm9000/loongson2 have different performance counters, they have
0632  * specific low-level init routines.
0633  */
0634 static void reset_counters(void *arg);
0635 static int __hw_perf_event_init(struct perf_event *event);
0636 
0637 static void hw_perf_event_destroy(struct perf_event *event)
0638 {
0639     if (atomic_dec_and_mutex_lock(&active_events,
0640                 &pmu_reserve_mutex)) {
0641         /*
0642          * We must not call the destroy function with interrupts
0643          * disabled.
0644          */
0645         on_each_cpu(reset_counters,
0646             (void *)(long)mipspmu.num_counters, 1);
0647         mipspmu_free_irq();
0648         mutex_unlock(&pmu_reserve_mutex);
0649     }
0650 }
0651 
0652 static int mipspmu_event_init(struct perf_event *event)
0653 {
0654     int err = 0;
0655 
0656     /* does not support taken branch sampling */
0657     if (has_branch_stack(event))
0658         return -EOPNOTSUPP;
0659 
0660     switch (event->attr.type) {
0661     case PERF_TYPE_RAW:
0662     case PERF_TYPE_HARDWARE:
0663     case PERF_TYPE_HW_CACHE:
0664         break;
0665 
0666     default:
0667         return -ENOENT;
0668     }
0669 
0670     if (event->cpu >= 0 && !cpu_online(event->cpu))
0671         return -ENODEV;
0672 
0673     if (!atomic_inc_not_zero(&active_events)) {
0674         mutex_lock(&pmu_reserve_mutex);
0675         if (atomic_read(&active_events) == 0)
0676             err = mipspmu_get_irq();
0677 
0678         if (!err)
0679             atomic_inc(&active_events);
0680         mutex_unlock(&pmu_reserve_mutex);
0681     }
0682 
0683     if (err)
0684         return err;
0685 
0686     return __hw_perf_event_init(event);
0687 }
0688 
0689 static struct pmu pmu = {
0690     .pmu_enable = mipspmu_enable,
0691     .pmu_disable    = mipspmu_disable,
0692     .event_init = mipspmu_event_init,
0693     .add        = mipspmu_add,
0694     .del        = mipspmu_del,
0695     .start      = mipspmu_start,
0696     .stop       = mipspmu_stop,
0697     .read       = mipspmu_read,
0698 };
0699 
0700 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
0701 {
0702 /*
0703  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
0704  * event_id.
0705  */
0706 #ifdef CONFIG_MIPS_MT_SMP
0707     if (num_possible_cpus() > 1)
0708         return ((unsigned int)pev->range << 24) |
0709             (pev->cntr_mask & 0xffff00) |
0710             (pev->event_id & 0xff);
0711     else
0712 #endif /* CONFIG_MIPS_MT_SMP */
0713     {
0714         if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
0715             return (pev->cntr_mask & 0xfffc00) |
0716                 (pev->event_id & 0x3ff);
0717         else
0718             return (pev->cntr_mask & 0xffff00) |
0719                 (pev->event_id & 0xff);
0720     }
0721 }
0722 
0723 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
0724 {
0725 
0726     if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
0727         return ERR_PTR(-EOPNOTSUPP);
0728     return &(*mipspmu.general_event_map)[idx];
0729 }
0730 
0731 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
0732 {
0733     unsigned int cache_type, cache_op, cache_result;
0734     const struct mips_perf_event *pev;
0735 
0736     cache_type = (config >> 0) & 0xff;
0737     if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
0738         return ERR_PTR(-EINVAL);
0739 
0740     cache_op = (config >> 8) & 0xff;
0741     if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
0742         return ERR_PTR(-EINVAL);
0743 
0744     cache_result = (config >> 16) & 0xff;
0745     if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
0746         return ERR_PTR(-EINVAL);
0747 
0748     pev = &((*mipspmu.cache_event_map)
0749                     [cache_type]
0750                     [cache_op]
0751                     [cache_result]);
0752 
0753     if (pev->cntr_mask == 0)
0754         return ERR_PTR(-EOPNOTSUPP);
0755 
0756     return pev;
0757 
0758 }
0759 
0760 static int validate_group(struct perf_event *event)
0761 {
0762     struct perf_event *sibling, *leader = event->group_leader;
0763     struct cpu_hw_events fake_cpuc;
0764 
0765     memset(&fake_cpuc, 0, sizeof(fake_cpuc));
0766 
0767     if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
0768         return -EINVAL;
0769 
0770     for_each_sibling_event(sibling, leader) {
0771         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
0772             return -EINVAL;
0773     }
0774 
0775     if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
0776         return -EINVAL;
0777 
0778     return 0;
0779 }
0780 
0781 /* This is needed by specific irq handlers in perf_event_*.c */
0782 static void handle_associated_event(struct cpu_hw_events *cpuc,
0783                     int idx, struct perf_sample_data *data,
0784                     struct pt_regs *regs)
0785 {
0786     struct perf_event *event = cpuc->events[idx];
0787     struct hw_perf_event *hwc = &event->hw;
0788 
0789     mipspmu_event_update(event, hwc, idx);
0790     data->period = event->hw.last_period;
0791     if (!mipspmu_event_set_period(event, hwc, idx))
0792         return;
0793 
0794     if (perf_event_overflow(event, data, regs))
0795         mipsxx_pmu_disable_event(idx);
0796 }
0797 
0798 
0799 static int __n_counters(void)
0800 {
0801     if (!cpu_has_perf)
0802         return 0;
0803     if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
0804         return 1;
0805     if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
0806         return 2;
0807     if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
0808         return 3;
0809 
0810     return 4;
0811 }
0812 
0813 static int n_counters(void)
0814 {
0815     int counters;
0816 
0817     switch (current_cpu_type()) {
0818     case CPU_R10000:
0819         counters = 2;
0820         break;
0821 
0822     case CPU_R12000:
0823     case CPU_R14000:
0824     case CPU_R16000:
0825         counters = 4;
0826         break;
0827 
0828     default:
0829         counters = __n_counters();
0830     }
0831 
0832     return counters;
0833 }
0834 
0835 static void loongson3_reset_counters(void *arg)
0836 {
0837     int counters = (int)(long)arg;
0838 
0839     switch (counters) {
0840     case 4:
0841         mipsxx_pmu_write_control(3, 0);
0842         mipspmu.write_counter(3, 0);
0843         mipsxx_pmu_write_control(3, 127<<5);
0844         mipspmu.write_counter(3, 0);
0845         mipsxx_pmu_write_control(3, 191<<5);
0846         mipspmu.write_counter(3, 0);
0847         mipsxx_pmu_write_control(3, 255<<5);
0848         mipspmu.write_counter(3, 0);
0849         mipsxx_pmu_write_control(3, 319<<5);
0850         mipspmu.write_counter(3, 0);
0851         mipsxx_pmu_write_control(3, 383<<5);
0852         mipspmu.write_counter(3, 0);
0853         mipsxx_pmu_write_control(3, 575<<5);
0854         mipspmu.write_counter(3, 0);
0855         fallthrough;
0856     case 3:
0857         mipsxx_pmu_write_control(2, 0);
0858         mipspmu.write_counter(2, 0);
0859         mipsxx_pmu_write_control(2, 127<<5);
0860         mipspmu.write_counter(2, 0);
0861         mipsxx_pmu_write_control(2, 191<<5);
0862         mipspmu.write_counter(2, 0);
0863         mipsxx_pmu_write_control(2, 255<<5);
0864         mipspmu.write_counter(2, 0);
0865         mipsxx_pmu_write_control(2, 319<<5);
0866         mipspmu.write_counter(2, 0);
0867         mipsxx_pmu_write_control(2, 383<<5);
0868         mipspmu.write_counter(2, 0);
0869         mipsxx_pmu_write_control(2, 575<<5);
0870         mipspmu.write_counter(2, 0);
0871         fallthrough;
0872     case 2:
0873         mipsxx_pmu_write_control(1, 0);
0874         mipspmu.write_counter(1, 0);
0875         mipsxx_pmu_write_control(1, 127<<5);
0876         mipspmu.write_counter(1, 0);
0877         mipsxx_pmu_write_control(1, 191<<5);
0878         mipspmu.write_counter(1, 0);
0879         mipsxx_pmu_write_control(1, 255<<5);
0880         mipspmu.write_counter(1, 0);
0881         mipsxx_pmu_write_control(1, 319<<5);
0882         mipspmu.write_counter(1, 0);
0883         mipsxx_pmu_write_control(1, 383<<5);
0884         mipspmu.write_counter(1, 0);
0885         mipsxx_pmu_write_control(1, 575<<5);
0886         mipspmu.write_counter(1, 0);
0887         fallthrough;
0888     case 1:
0889         mipsxx_pmu_write_control(0, 0);
0890         mipspmu.write_counter(0, 0);
0891         mipsxx_pmu_write_control(0, 127<<5);
0892         mipspmu.write_counter(0, 0);
0893         mipsxx_pmu_write_control(0, 191<<5);
0894         mipspmu.write_counter(0, 0);
0895         mipsxx_pmu_write_control(0, 255<<5);
0896         mipspmu.write_counter(0, 0);
0897         mipsxx_pmu_write_control(0, 319<<5);
0898         mipspmu.write_counter(0, 0);
0899         mipsxx_pmu_write_control(0, 383<<5);
0900         mipspmu.write_counter(0, 0);
0901         mipsxx_pmu_write_control(0, 575<<5);
0902         mipspmu.write_counter(0, 0);
0903         break;
0904     }
0905 }
0906 
0907 static void reset_counters(void *arg)
0908 {
0909     int counters = (int)(long)arg;
0910 
0911     if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
0912         loongson3_reset_counters(arg);
0913         return;
0914     }
0915 
0916     switch (counters) {
0917     case 4:
0918         mipsxx_pmu_write_control(3, 0);
0919         mipspmu.write_counter(3, 0);
0920         fallthrough;
0921     case 3:
0922         mipsxx_pmu_write_control(2, 0);
0923         mipspmu.write_counter(2, 0);
0924         fallthrough;
0925     case 2:
0926         mipsxx_pmu_write_control(1, 0);
0927         mipspmu.write_counter(1, 0);
0928         fallthrough;
0929     case 1:
0930         mipsxx_pmu_write_control(0, 0);
0931         mipspmu.write_counter(0, 0);
0932         break;
0933     }
0934 }
0935 
0936 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
0937 static const struct mips_perf_event mipsxxcore_event_map
0938                 [PERF_COUNT_HW_MAX] = {
0939     [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
0940     [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
0941     [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
0942     [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
0943 };
0944 
0945 /* 74K/proAptiv core has different branch event code. */
0946 static const struct mips_perf_event mipsxxcore_event_map2
0947                 [PERF_COUNT_HW_MAX] = {
0948     [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
0949     [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
0950     [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
0951     [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
0952 };
0953 
0954 static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
0955     [PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
0956     [PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
0957     /* These only count dcache, not icache */
0958     [PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
0959     [PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
0960     [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
0961     [PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
0962 };
0963 
0964 static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
0965     [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
0966     [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
0967     [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
0968     [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
0969 };
0970 
0971 static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
0972     [PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
0973     [PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
0974     [PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
0975     [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
0976     [PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
0977 };
0978 
0979 static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
0980     [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
0981     [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
0982     [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
0983     [PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
0984     [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
0985     [PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
0986 };
0987 
0988 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
0989     [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
0990     [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
0991     [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
0992     [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
0993     [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
0994     [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
0995     [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
0996 };
0997 
0998 static const struct mips_perf_event bmips5000_event_map
0999                 [PERF_COUNT_HW_MAX] = {
1000     [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
1001     [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
1002     [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
1003 };
1004 
1005 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
1006 static const struct mips_perf_event mipsxxcore_cache_map
1007                 [PERF_COUNT_HW_CACHE_MAX]
1008                 [PERF_COUNT_HW_CACHE_OP_MAX]
1009                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1010 [C(L1D)] = {
1011     /*
1012      * Like some other architectures (e.g. ARM), the performance
1013      * counters don't differentiate between read and write
1014      * accesses/misses, so this isn't strictly correct, but it's the
1015      * best we can do. Writes and reads get combined.
1016      */
1017     [C(OP_READ)] = {
1018         [C(RESULT_ACCESS)]  = { 0x0a, CNTR_EVEN, T },
1019         [C(RESULT_MISS)]    = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1020     },
1021     [C(OP_WRITE)] = {
1022         [C(RESULT_ACCESS)]  = { 0x0a, CNTR_EVEN, T },
1023         [C(RESULT_MISS)]    = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1024     },
1025 },
1026 [C(L1I)] = {
1027     [C(OP_READ)] = {
1028         [C(RESULT_ACCESS)]  = { 0x09, CNTR_EVEN, T },
1029         [C(RESULT_MISS)]    = { 0x09, CNTR_ODD, T },
1030     },
1031     [C(OP_WRITE)] = {
1032         [C(RESULT_ACCESS)]  = { 0x09, CNTR_EVEN, T },
1033         [C(RESULT_MISS)]    = { 0x09, CNTR_ODD, T },
1034     },
1035     [C(OP_PREFETCH)] = {
1036         [C(RESULT_ACCESS)]  = { 0x14, CNTR_EVEN, T },
1037         /*
1038          * Note that MIPS has only "hit" events countable for
1039          * the prefetch operation.
1040          */
1041     },
1042 },
1043 [C(LL)] = {
1044     [C(OP_READ)] = {
1045         [C(RESULT_ACCESS)]  = { 0x15, CNTR_ODD, P },
1046         [C(RESULT_MISS)]    = { 0x16, CNTR_EVEN, P },
1047     },
1048     [C(OP_WRITE)] = {
1049         [C(RESULT_ACCESS)]  = { 0x15, CNTR_ODD, P },
1050         [C(RESULT_MISS)]    = { 0x16, CNTR_EVEN, P },
1051     },
1052 },
1053 [C(DTLB)] = {
1054     [C(OP_READ)] = {
1055         [C(RESULT_ACCESS)]  = { 0x06, CNTR_EVEN, T },
1056         [C(RESULT_MISS)]    = { 0x06, CNTR_ODD, T },
1057     },
1058     [C(OP_WRITE)] = {
1059         [C(RESULT_ACCESS)]  = { 0x06, CNTR_EVEN, T },
1060         [C(RESULT_MISS)]    = { 0x06, CNTR_ODD, T },
1061     },
1062 },
1063 [C(ITLB)] = {
1064     [C(OP_READ)] = {
1065         [C(RESULT_ACCESS)]  = { 0x05, CNTR_EVEN, T },
1066         [C(RESULT_MISS)]    = { 0x05, CNTR_ODD, T },
1067     },
1068     [C(OP_WRITE)] = {
1069         [C(RESULT_ACCESS)]  = { 0x05, CNTR_EVEN, T },
1070         [C(RESULT_MISS)]    = { 0x05, CNTR_ODD, T },
1071     },
1072 },
1073 [C(BPU)] = {
1074     /* Using the same code for *HW_BRANCH* */
1075     [C(OP_READ)] = {
1076         [C(RESULT_ACCESS)]  = { 0x02, CNTR_EVEN, T },
1077         [C(RESULT_MISS)]    = { 0x02, CNTR_ODD, T },
1078     },
1079     [C(OP_WRITE)] = {
1080         [C(RESULT_ACCESS)]  = { 0x02, CNTR_EVEN, T },
1081         [C(RESULT_MISS)]    = { 0x02, CNTR_ODD, T },
1082     },
1083 },
1084 };
1085 
1086 /* 74K/proAptiv core has completely different cache event map. */
1087 static const struct mips_perf_event mipsxxcore_cache_map2
1088                 [PERF_COUNT_HW_CACHE_MAX]
1089                 [PERF_COUNT_HW_CACHE_OP_MAX]
1090                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1091 [C(L1D)] = {
1092     /*
1093      * Like some other architectures (e.g. ARM), the performance
1094      * counters don't differentiate between read and write
1095      * accesses/misses, so this isn't strictly correct, but it's the
1096      * best we can do. Writes and reads get combined.
1097      */
1098     [C(OP_READ)] = {
1099         [C(RESULT_ACCESS)]  = { 0x17, CNTR_ODD, T },
1100         [C(RESULT_MISS)]    = { 0x18, CNTR_ODD, T },
1101     },
1102     [C(OP_WRITE)] = {
1103         [C(RESULT_ACCESS)]  = { 0x17, CNTR_ODD, T },
1104         [C(RESULT_MISS)]    = { 0x18, CNTR_ODD, T },
1105     },
1106 },
1107 [C(L1I)] = {
1108     [C(OP_READ)] = {
1109         [C(RESULT_ACCESS)]  = { 0x06, CNTR_EVEN, T },
1110         [C(RESULT_MISS)]    = { 0x06, CNTR_ODD, T },
1111     },
1112     [C(OP_WRITE)] = {
1113         [C(RESULT_ACCESS)]  = { 0x06, CNTR_EVEN, T },
1114         [C(RESULT_MISS)]    = { 0x06, CNTR_ODD, T },
1115     },
1116     [C(OP_PREFETCH)] = {
1117         [C(RESULT_ACCESS)]  = { 0x34, CNTR_EVEN, T },
1118         /*
1119          * Note that MIPS has only "hit" events countable for
1120          * the prefetch operation.
1121          */
1122     },
1123 },
1124 [C(LL)] = {
1125     [C(OP_READ)] = {
1126         [C(RESULT_ACCESS)]  = { 0x1c, CNTR_ODD, P },
1127         [C(RESULT_MISS)]    = { 0x1d, CNTR_EVEN, P },
1128     },
1129     [C(OP_WRITE)] = {
1130         [C(RESULT_ACCESS)]  = { 0x1c, CNTR_ODD, P },
1131         [C(RESULT_MISS)]    = { 0x1d, CNTR_EVEN, P },
1132     },
1133 },
1134 /*
1135  * 74K core does not have specific DTLB events. proAptiv core has
1136  * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1137  * not included here. One can use raw events if really needed.
1138  */
1139 [C(ITLB)] = {
1140     [C(OP_READ)] = {
1141         [C(RESULT_ACCESS)]  = { 0x04, CNTR_EVEN, T },
1142         [C(RESULT_MISS)]    = { 0x04, CNTR_ODD, T },
1143     },
1144     [C(OP_WRITE)] = {
1145         [C(RESULT_ACCESS)]  = { 0x04, CNTR_EVEN, T },
1146         [C(RESULT_MISS)]    = { 0x04, CNTR_ODD, T },
1147     },
1148 },
1149 [C(BPU)] = {
1150     /* Using the same code for *HW_BRANCH* */
1151     [C(OP_READ)] = {
1152         [C(RESULT_ACCESS)]  = { 0x27, CNTR_EVEN, T },
1153         [C(RESULT_MISS)]    = { 0x27, CNTR_ODD, T },
1154     },
1155     [C(OP_WRITE)] = {
1156         [C(RESULT_ACCESS)]  = { 0x27, CNTR_EVEN, T },
1157         [C(RESULT_MISS)]    = { 0x27, CNTR_ODD, T },
1158     },
1159 },
1160 };
1161 
1162 static const struct mips_perf_event i6x00_cache_map
1163                 [PERF_COUNT_HW_CACHE_MAX]
1164                 [PERF_COUNT_HW_CACHE_OP_MAX]
1165                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1166 [C(L1D)] = {
1167     [C(OP_READ)] = {
1168         [C(RESULT_ACCESS)]  = { 0x46, CNTR_EVEN | CNTR_ODD },
1169         [C(RESULT_MISS)]    = { 0x49, CNTR_EVEN | CNTR_ODD },
1170     },
1171     [C(OP_WRITE)] = {
1172         [C(RESULT_ACCESS)]  = { 0x47, CNTR_EVEN | CNTR_ODD },
1173         [C(RESULT_MISS)]    = { 0x4a, CNTR_EVEN | CNTR_ODD },
1174     },
1175 },
1176 [C(L1I)] = {
1177     [C(OP_READ)] = {
1178         [C(RESULT_ACCESS)]  = { 0x84, CNTR_EVEN | CNTR_ODD },
1179         [C(RESULT_MISS)]    = { 0x85, CNTR_EVEN | CNTR_ODD },
1180     },
1181 },
1182 [C(DTLB)] = {
1183     /* Can't distinguish read & write */
1184     [C(OP_READ)] = {
1185         [C(RESULT_ACCESS)]  = { 0x40, CNTR_EVEN | CNTR_ODD },
1186         [C(RESULT_MISS)]    = { 0x41, CNTR_EVEN | CNTR_ODD },
1187     },
1188     [C(OP_WRITE)] = {
1189         [C(RESULT_ACCESS)]  = { 0x40, CNTR_EVEN | CNTR_ODD },
1190         [C(RESULT_MISS)]    = { 0x41, CNTR_EVEN | CNTR_ODD },
1191     },
1192 },
1193 [C(BPU)] = {
1194     /* Conditional branches / mispredicted */
1195     [C(OP_READ)] = {
1196         [C(RESULT_ACCESS)]  = { 0x15, CNTR_EVEN | CNTR_ODD },
1197         [C(RESULT_MISS)]    = { 0x16, CNTR_EVEN | CNTR_ODD },
1198     },
1199 },
1200 };
1201 
1202 static const struct mips_perf_event loongson3_cache_map1
1203                 [PERF_COUNT_HW_CACHE_MAX]
1204                 [PERF_COUNT_HW_CACHE_OP_MAX]
1205                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1206 [C(L1D)] = {
1207     /*
1208      * Like some other architectures (e.g. ARM), the performance
1209      * counters don't differentiate between read and write
1210      * accesses/misses, so this isn't strictly correct, but it's the
1211      * best we can do. Writes and reads get combined.
1212      */
1213     [C(OP_READ)] = {
1214         [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1215     },
1216     [C(OP_WRITE)] = {
1217         [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1218     },
1219 },
1220 [C(L1I)] = {
1221     [C(OP_READ)] = {
1222         [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1223     },
1224     [C(OP_WRITE)] = {
1225         [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1226     },
1227 },
1228 [C(DTLB)] = {
1229     [C(OP_READ)] = {
1230         [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1231     },
1232     [C(OP_WRITE)] = {
1233         [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1234     },
1235 },
1236 [C(ITLB)] = {
1237     [C(OP_READ)] = {
1238         [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1239     },
1240     [C(OP_WRITE)] = {
1241         [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1242     },
1243 },
1244 [C(BPU)] = {
1245     /* Using the same code for *HW_BRANCH* */
1246     [C(OP_READ)] = {
1247         [C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1248         [C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1249     },
1250     [C(OP_WRITE)] = {
1251         [C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1252         [C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1253     },
1254 },
1255 };
1256 
1257 static const struct mips_perf_event loongson3_cache_map2
1258                 [PERF_COUNT_HW_CACHE_MAX]
1259                 [PERF_COUNT_HW_CACHE_OP_MAX]
1260                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1261 [C(L1D)] = {
1262     /*
1263      * Like some other architectures (e.g. ARM), the performance
1264      * counters don't differentiate between read and write
1265      * accesses/misses, so this isn't strictly correct, but it's the
1266      * best we can do. Writes and reads get combined.
1267      */
1268     [C(OP_READ)] = {
1269         [C(RESULT_ACCESS)]  = { 0x156, CNTR_ALL },
1270     },
1271     [C(OP_WRITE)] = {
1272         [C(RESULT_ACCESS)]  = { 0x155, CNTR_ALL },
1273         [C(RESULT_MISS)]        = { 0x153, CNTR_ALL },
1274     },
1275 },
1276 [C(L1I)] = {
1277     [C(OP_READ)] = {
1278         [C(RESULT_MISS)]    = { 0x18, CNTR_ALL },
1279     },
1280     [C(OP_WRITE)] = {
1281         [C(RESULT_MISS)]        = { 0x18, CNTR_ALL },
1282     },
1283 },
1284 [C(LL)] = {
1285     [C(OP_READ)] = {
1286         [C(RESULT_ACCESS)]  = { 0x1b6, CNTR_ALL },
1287     },
1288     [C(OP_WRITE)] = {
1289         [C(RESULT_ACCESS)]  = { 0x1b7, CNTR_ALL },
1290     },
1291     [C(OP_PREFETCH)] = {
1292         [C(RESULT_ACCESS)]  = { 0x1bf, CNTR_ALL },
1293     },
1294 },
1295 [C(DTLB)] = {
1296     [C(OP_READ)] = {
1297         [C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1298     },
1299     [C(OP_WRITE)] = {
1300         [C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1301     },
1302 },
1303 [C(ITLB)] = {
1304     [C(OP_READ)] = {
1305         [C(RESULT_MISS)]    = { 0x1a, CNTR_ALL },
1306     },
1307     [C(OP_WRITE)] = {
1308         [C(RESULT_MISS)]    = { 0x1a, CNTR_ALL },
1309     },
1310 },
1311 [C(BPU)] = {
1312     /* Using the same code for *HW_BRANCH* */
1313     [C(OP_READ)] = {
1314         [C(RESULT_ACCESS)]      = { 0x94, CNTR_ALL },
1315         [C(RESULT_MISS)]        = { 0x9c, CNTR_ALL },
1316     },
1317 },
1318 };
1319 
1320 static const struct mips_perf_event loongson3_cache_map3
1321                 [PERF_COUNT_HW_CACHE_MAX]
1322                 [PERF_COUNT_HW_CACHE_OP_MAX]
1323                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1324 [C(L1D)] = {
1325     /*
1326      * Like some other architectures (e.g. ARM), the performance
1327      * counters don't differentiate between read and write
1328      * accesses/misses, so this isn't strictly correct, but it's the
1329      * best we can do. Writes and reads get combined.
1330      */
1331     [C(OP_READ)] = {
1332         [C(RESULT_ACCESS)]      = { 0x1e, CNTR_ALL },
1333         [C(RESULT_MISS)]        = { 0x1f, CNTR_ALL },
1334     },
1335     [C(OP_PREFETCH)] = {
1336         [C(RESULT_ACCESS)]  = { 0xaa, CNTR_ALL },
1337         [C(RESULT_MISS)]    = { 0xa9, CNTR_ALL },
1338     },
1339 },
1340 [C(L1I)] = {
1341     [C(OP_READ)] = {
1342         [C(RESULT_ACCESS)]  = { 0x1c, CNTR_ALL },
1343         [C(RESULT_MISS)]    = { 0x1d, CNTR_ALL },
1344     },
1345 },
1346 [C(LL)] = {
1347     [C(OP_READ)] = {
1348         [C(RESULT_ACCESS)]  = { 0x2e, CNTR_ALL },
1349         [C(RESULT_MISS)]    = { 0x2f, CNTR_ALL },
1350     },
1351 },
1352 [C(DTLB)] = {
1353     [C(OP_READ)] = {
1354         [C(RESULT_ACCESS)]      = { 0x14, CNTR_ALL },
1355         [C(RESULT_MISS)]    = { 0x1b, CNTR_ALL },
1356     },
1357 },
1358 [C(ITLB)] = {
1359     [C(OP_READ)] = {
1360         [C(RESULT_MISS)]    = { 0x1a, CNTR_ALL },
1361     },
1362 },
1363 [C(BPU)] = {
1364     /* Using the same code for *HW_BRANCH* */
1365     [C(OP_READ)] = {
1366         [C(RESULT_ACCESS)]      = { 0x02, CNTR_ALL },
1367         [C(RESULT_MISS)]        = { 0x08, CNTR_ALL },
1368     },
1369 },
1370 };
1371 
1372 /* BMIPS5000 */
1373 static const struct mips_perf_event bmips5000_cache_map
1374                 [PERF_COUNT_HW_CACHE_MAX]
1375                 [PERF_COUNT_HW_CACHE_OP_MAX]
1376                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1377 [C(L1D)] = {
1378     /*
1379      * Like some other architectures (e.g. ARM), the performance
1380      * counters don't differentiate between read and write
1381      * accesses/misses, so this isn't strictly correct, but it's the
1382      * best we can do. Writes and reads get combined.
1383      */
1384     [C(OP_READ)] = {
1385         [C(RESULT_ACCESS)]  = { 12, CNTR_EVEN, T },
1386         [C(RESULT_MISS)]    = { 12, CNTR_ODD, T },
1387     },
1388     [C(OP_WRITE)] = {
1389         [C(RESULT_ACCESS)]  = { 12, CNTR_EVEN, T },
1390         [C(RESULT_MISS)]    = { 12, CNTR_ODD, T },
1391     },
1392 },
1393 [C(L1I)] = {
1394     [C(OP_READ)] = {
1395         [C(RESULT_ACCESS)]  = { 10, CNTR_EVEN, T },
1396         [C(RESULT_MISS)]    = { 10, CNTR_ODD, T },
1397     },
1398     [C(OP_WRITE)] = {
1399         [C(RESULT_ACCESS)]  = { 10, CNTR_EVEN, T },
1400         [C(RESULT_MISS)]    = { 10, CNTR_ODD, T },
1401     },
1402     [C(OP_PREFETCH)] = {
1403         [C(RESULT_ACCESS)]  = { 23, CNTR_EVEN, T },
1404         /*
1405          * Note that MIPS has only "hit" events countable for
1406          * the prefetch operation.
1407          */
1408     },
1409 },
1410 [C(LL)] = {
1411     [C(OP_READ)] = {
1412         [C(RESULT_ACCESS)]  = { 28, CNTR_EVEN, P },
1413         [C(RESULT_MISS)]    = { 28, CNTR_ODD, P },
1414     },
1415     [C(OP_WRITE)] = {
1416         [C(RESULT_ACCESS)]  = { 28, CNTR_EVEN, P },
1417         [C(RESULT_MISS)]    = { 28, CNTR_ODD, P },
1418     },
1419 },
1420 [C(BPU)] = {
1421     /* Using the same code for *HW_BRANCH* */
1422     [C(OP_READ)] = {
1423         [C(RESULT_MISS)]    = { 0x02, CNTR_ODD, T },
1424     },
1425     [C(OP_WRITE)] = {
1426         [C(RESULT_MISS)]    = { 0x02, CNTR_ODD, T },
1427     },
1428 },
1429 };
1430 
1431 static const struct mips_perf_event octeon_cache_map
1432                 [PERF_COUNT_HW_CACHE_MAX]
1433                 [PERF_COUNT_HW_CACHE_OP_MAX]
1434                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1435 [C(L1D)] = {
1436     [C(OP_READ)] = {
1437         [C(RESULT_ACCESS)]  = { 0x2b, CNTR_ALL },
1438         [C(RESULT_MISS)]    = { 0x2e, CNTR_ALL },
1439     },
1440     [C(OP_WRITE)] = {
1441         [C(RESULT_ACCESS)]  = { 0x30, CNTR_ALL },
1442     },
1443 },
1444 [C(L1I)] = {
1445     [C(OP_READ)] = {
1446         [C(RESULT_ACCESS)]  = { 0x18, CNTR_ALL },
1447     },
1448     [C(OP_PREFETCH)] = {
1449         [C(RESULT_ACCESS)]  = { 0x19, CNTR_ALL },
1450     },
1451 },
1452 [C(DTLB)] = {
1453     /*
1454      * Only general DTLB misses are counted use the same event for
1455      * read and write.
1456      */
1457     [C(OP_READ)] = {
1458         [C(RESULT_MISS)]    = { 0x35, CNTR_ALL },
1459     },
1460     [C(OP_WRITE)] = {
1461         [C(RESULT_MISS)]    = { 0x35, CNTR_ALL },
1462     },
1463 },
1464 [C(ITLB)] = {
1465     [C(OP_READ)] = {
1466         [C(RESULT_MISS)]    = { 0x37, CNTR_ALL },
1467     },
1468 },
1469 };
1470 
1471 static int __hw_perf_event_init(struct perf_event *event)
1472 {
1473     struct perf_event_attr *attr = &event->attr;
1474     struct hw_perf_event *hwc = &event->hw;
1475     const struct mips_perf_event *pev;
1476     int err;
1477 
1478     /* Returning MIPS event descriptor for generic perf event. */
1479     if (PERF_TYPE_HARDWARE == event->attr.type) {
1480         if (event->attr.config >= PERF_COUNT_HW_MAX)
1481             return -EINVAL;
1482         pev = mipspmu_map_general_event(event->attr.config);
1483     } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1484         pev = mipspmu_map_cache_event(event->attr.config);
1485     } else if (PERF_TYPE_RAW == event->attr.type) {
1486         /* We are working on the global raw event. */
1487         mutex_lock(&raw_event_mutex);
1488         pev = mipspmu.map_raw_event(event->attr.config);
1489     } else {
1490         /* The event type is not (yet) supported. */
1491         return -EOPNOTSUPP;
1492     }
1493 
1494     if (IS_ERR(pev)) {
1495         if (PERF_TYPE_RAW == event->attr.type)
1496             mutex_unlock(&raw_event_mutex);
1497         return PTR_ERR(pev);
1498     }
1499 
1500     /*
1501      * We allow max flexibility on how each individual counter shared
1502      * by the single CPU operates (the mode exclusion and the range).
1503      */
1504     hwc->config_base = MIPS_PERFCTRL_IE;
1505 
1506     hwc->event_base = mipspmu_perf_event_encode(pev);
1507     if (PERF_TYPE_RAW == event->attr.type)
1508         mutex_unlock(&raw_event_mutex);
1509 
1510     if (!attr->exclude_user)
1511         hwc->config_base |= MIPS_PERFCTRL_U;
1512     if (!attr->exclude_kernel) {
1513         hwc->config_base |= MIPS_PERFCTRL_K;
1514         /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1515         hwc->config_base |= MIPS_PERFCTRL_EXL;
1516     }
1517     if (!attr->exclude_hv)
1518         hwc->config_base |= MIPS_PERFCTRL_S;
1519 
1520     hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1521     /*
1522      * The event can belong to another cpu. We do not assign a local
1523      * counter for it for now.
1524      */
1525     hwc->idx = -1;
1526     hwc->config = 0;
1527 
1528     if (!hwc->sample_period) {
1529         hwc->sample_period  = mipspmu.max_period;
1530         hwc->last_period    = hwc->sample_period;
1531         local64_set(&hwc->period_left, hwc->sample_period);
1532     }
1533 
1534     err = 0;
1535     if (event->group_leader != event)
1536         err = validate_group(event);
1537 
1538     event->destroy = hw_perf_event_destroy;
1539 
1540     if (err)
1541         event->destroy(event);
1542 
1543     return err;
1544 }
1545 
1546 static void pause_local_counters(void)
1547 {
1548     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1549     int ctr = mipspmu.num_counters;
1550     unsigned long flags;
1551 
1552     local_irq_save(flags);
1553     do {
1554         ctr--;
1555         cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1556         mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1557                      ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1558     } while (ctr > 0);
1559     local_irq_restore(flags);
1560 }
1561 
1562 static void resume_local_counters(void)
1563 {
1564     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1565     int ctr = mipspmu.num_counters;
1566 
1567     do {
1568         ctr--;
1569         mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1570     } while (ctr > 0);
1571 }
1572 
1573 static int mipsxx_pmu_handle_shared_irq(void)
1574 {
1575     struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1576     struct perf_sample_data data;
1577     unsigned int counters = mipspmu.num_counters;
1578     u64 counter;
1579     int n, handled = IRQ_NONE;
1580     struct pt_regs *regs;
1581 
1582     if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1583         return handled;
1584     /*
1585      * First we pause the local counters, so that when we are locked
1586      * here, the counters are all paused. When it gets locked due to
1587      * perf_disable(), the timer interrupt handler will be delayed.
1588      *
1589      * See also mipsxx_pmu_start().
1590      */
1591     pause_local_counters();
1592 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1593     read_lock(&pmuint_rwlock);
1594 #endif
1595 
1596     regs = get_irq_regs();
1597 
1598     perf_sample_data_init(&data, 0, 0);
1599 
1600     for (n = counters - 1; n >= 0; n--) {
1601         if (!test_bit(n, cpuc->used_mask))
1602             continue;
1603 
1604         counter = mipspmu.read_counter(n);
1605         if (!(counter & mipspmu.overflow))
1606             continue;
1607 
1608         handle_associated_event(cpuc, n, &data, regs);
1609         handled = IRQ_HANDLED;
1610     }
1611 
1612 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1613     read_unlock(&pmuint_rwlock);
1614 #endif
1615     resume_local_counters();
1616 
1617     /*
1618      * Do all the work for the pending perf events. We can do this
1619      * in here because the performance counter interrupt is a regular
1620      * interrupt, not NMI.
1621      */
1622     if (handled == IRQ_HANDLED)
1623         irq_work_run();
1624 
1625     return handled;
1626 }
1627 
1628 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1629 {
1630     return mipsxx_pmu_handle_shared_irq();
1631 }
1632 
1633 /* 24K */
1634 #define IS_BOTH_COUNTERS_24K_EVENT(b)                   \
1635     ((b) == 0 || (b) == 1 || (b) == 11)
1636 
1637 /* 34K */
1638 #define IS_BOTH_COUNTERS_34K_EVENT(b)                   \
1639     ((b) == 0 || (b) == 1 || (b) == 11)
1640 #ifdef CONFIG_MIPS_MT_SMP
1641 #define IS_RANGE_P_34K_EVENT(r, b)                  \
1642     ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||     \
1643      (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||       \
1644      (r) == 176 || ((b) >= 50 && (b) <= 55) ||          \
1645      ((b) >= 64 && (b) <= 67))
1646 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1647 #endif
1648 
1649 /* 74K */
1650 #define IS_BOTH_COUNTERS_74K_EVENT(b)                   \
1651     ((b) == 0 || (b) == 1)
1652 
1653 /* proAptiv */
1654 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)              \
1655     ((b) == 0 || (b) == 1)
1656 /* P5600 */
1657 #define IS_BOTH_COUNTERS_P5600_EVENT(b)                 \
1658     ((b) == 0 || (b) == 1)
1659 
1660 /* 1004K */
1661 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                 \
1662     ((b) == 0 || (b) == 1 || (b) == 11)
1663 #ifdef CONFIG_MIPS_MT_SMP
1664 #define IS_RANGE_P_1004K_EVENT(r, b)                    \
1665     ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||     \
1666      (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||        \
1667      (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||    \
1668      (r) == 188 || (b) == 61 || (b) == 62 ||            \
1669      ((b) >= 64 && (b) <= 67))
1670 #define IS_RANGE_V_1004K_EVENT(r)   ((r) == 47)
1671 #endif
1672 
1673 /* interAptiv */
1674 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)                \
1675     ((b) == 0 || (b) == 1 || (b) == 11)
1676 #ifdef CONFIG_MIPS_MT_SMP
1677 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1678 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b)               \
1679     ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||     \
1680      (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||        \
1681      (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&     \
1682      (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||      \
1683      ((b) >= 64 && (b) <= 67))
1684 #define IS_RANGE_V_INTERAPTIV_EVENT(r)  ((r) == 47 || (r) == 175)
1685 #endif
1686 
1687 /* BMIPS5000 */
1688 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)             \
1689     ((b) == 0 || (b) == 1)
1690 
1691 
1692 /*
1693  * For most cores the user can use 0-255 raw events, where 0-127 for the events
1694  * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1695  * indicate the even/odd bank selector. So, for example, when user wants to take
1696  * the Event Num of 15 for odd counters (by referring to the user manual), then
1697  * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1698  * to be used.
1699  *
1700  * Some newer cores have even more events, in which case the user can use raw
1701  * events 0-511, where 0-255 are for the events of even counters, and 256-511
1702  * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1703  */
1704 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1705 {
1706     /* currently most cores have 7-bit event numbers */
1707     int pmu_type;
1708     unsigned int raw_id = config & 0xff;
1709     unsigned int base_id = raw_id & 0x7f;
1710 
1711     switch (current_cpu_type()) {
1712     case CPU_24K:
1713         if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1714             raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1715         else
1716             raw_event.cntr_mask =
1717                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1718 #ifdef CONFIG_MIPS_MT_SMP
1719         /*
1720          * This is actually doing nothing. Non-multithreading
1721          * CPUs will not check and calculate the range.
1722          */
1723         raw_event.range = P;
1724 #endif
1725         break;
1726     case CPU_34K:
1727         if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1728             raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1729         else
1730             raw_event.cntr_mask =
1731                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1732 #ifdef CONFIG_MIPS_MT_SMP
1733         if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1734             raw_event.range = P;
1735         else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1736             raw_event.range = V;
1737         else
1738             raw_event.range = T;
1739 #endif
1740         break;
1741     case CPU_74K:
1742     case CPU_1074K:
1743         if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1744             raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1745         else
1746             raw_event.cntr_mask =
1747                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1748 #ifdef CONFIG_MIPS_MT_SMP
1749         raw_event.range = P;
1750 #endif
1751         break;
1752     case CPU_PROAPTIV:
1753         if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1754             raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1755         else
1756             raw_event.cntr_mask =
1757                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1758 #ifdef CONFIG_MIPS_MT_SMP
1759         raw_event.range = P;
1760 #endif
1761         break;
1762     case CPU_P5600:
1763     case CPU_P6600:
1764         /* 8-bit event numbers */
1765         raw_id = config & 0x1ff;
1766         base_id = raw_id & 0xff;
1767         if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1768             raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1769         else
1770             raw_event.cntr_mask =
1771                 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1772 #ifdef CONFIG_MIPS_MT_SMP
1773         raw_event.range = P;
1774 #endif
1775         break;
1776     case CPU_I6400:
1777     case CPU_I6500:
1778         /* 8-bit event numbers */
1779         base_id = config & 0xff;
1780         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1781         break;
1782     case CPU_1004K:
1783         if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1784             raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1785         else
1786             raw_event.cntr_mask =
1787                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1788 #ifdef CONFIG_MIPS_MT_SMP
1789         if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1790             raw_event.range = P;
1791         else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1792             raw_event.range = V;
1793         else
1794             raw_event.range = T;
1795 #endif
1796         break;
1797     case CPU_INTERAPTIV:
1798         if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1799             raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1800         else
1801             raw_event.cntr_mask =
1802                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1803 #ifdef CONFIG_MIPS_MT_SMP
1804         if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1805             raw_event.range = P;
1806         else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1807             raw_event.range = V;
1808         else
1809             raw_event.range = T;
1810 #endif
1811         break;
1812     case CPU_BMIPS5000:
1813         if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1814             raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1815         else
1816             raw_event.cntr_mask =
1817                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1818         break;
1819     case CPU_LOONGSON64:
1820         pmu_type = get_loongson3_pmu_type();
1821 
1822         switch (pmu_type) {
1823         case LOONGSON_PMU_TYPE1:
1824             raw_event.cntr_mask =
1825                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1826             break;
1827         case LOONGSON_PMU_TYPE2:
1828             base_id = config & 0x3ff;
1829             raw_event.cntr_mask = CNTR_ALL;
1830 
1831             if ((base_id >= 1 && base_id < 28) ||
1832                 (base_id >= 64 && base_id < 90) ||
1833                 (base_id >= 128 && base_id < 164) ||
1834                 (base_id >= 192 && base_id < 200) ||
1835                 (base_id >= 256 && base_id < 275) ||
1836                 (base_id >= 320 && base_id < 361) ||
1837                 (base_id >= 384 && base_id < 574))
1838                 break;
1839 
1840             return ERR_PTR(-EOPNOTSUPP);
1841         case LOONGSON_PMU_TYPE3:
1842             base_id = raw_id;
1843             raw_event.cntr_mask = CNTR_ALL;
1844             break;
1845         }
1846         break;
1847     }
1848 
1849     raw_event.event_id = base_id;
1850 
1851     return &raw_event;
1852 }
1853 
1854 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1855 {
1856     unsigned int base_id = config & 0x7f;
1857     unsigned int event_max;
1858 
1859 
1860     raw_event.cntr_mask = CNTR_ALL;
1861     raw_event.event_id = base_id;
1862 
1863     if (current_cpu_type() == CPU_CAVIUM_OCTEON3)
1864         event_max = 0x5f;
1865     else if (current_cpu_type() == CPU_CAVIUM_OCTEON2)
1866         event_max = 0x42;
1867     else
1868         event_max = 0x3a;
1869 
1870     if (base_id > event_max) {
1871         return ERR_PTR(-EOPNOTSUPP);
1872     }
1873 
1874     switch (base_id) {
1875     case 0x00:
1876     case 0x0f:
1877     case 0x1e:
1878     case 0x1f:
1879     case 0x2f:
1880     case 0x34:
1881     case 0x3e ... 0x3f:
1882         return ERR_PTR(-EOPNOTSUPP);
1883     default:
1884         break;
1885     }
1886 
1887     return &raw_event;
1888 }
1889 
1890 static int __init
1891 init_hw_perf_events(void)
1892 {
1893     int counters, irq, pmu_type;
1894 
1895     pr_info("Performance counters: ");
1896 
1897     counters = n_counters();
1898     if (counters == 0) {
1899         pr_cont("No available PMU.\n");
1900         return -ENODEV;
1901     }
1902 
1903 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1904     if (!cpu_has_mipsmt_pertccounters)
1905         counters = counters_total_to_per_cpu(counters);
1906 #endif
1907 
1908     if (get_c0_perfcount_int)
1909         irq = get_c0_perfcount_int();
1910     else if (cp0_perfcount_irq >= 0)
1911         irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1912     else
1913         irq = -1;
1914 
1915     mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1916 
1917     switch (current_cpu_type()) {
1918     case CPU_24K:
1919         mipspmu.name = "mips/24K";
1920         mipspmu.general_event_map = &mipsxxcore_event_map;
1921         mipspmu.cache_event_map = &mipsxxcore_cache_map;
1922         break;
1923     case CPU_34K:
1924         mipspmu.name = "mips/34K";
1925         mipspmu.general_event_map = &mipsxxcore_event_map;
1926         mipspmu.cache_event_map = &mipsxxcore_cache_map;
1927         break;
1928     case CPU_74K:
1929         mipspmu.name = "mips/74K";
1930         mipspmu.general_event_map = &mipsxxcore_event_map2;
1931         mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1932         break;
1933     case CPU_PROAPTIV:
1934         mipspmu.name = "mips/proAptiv";
1935         mipspmu.general_event_map = &mipsxxcore_event_map2;
1936         mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1937         break;
1938     case CPU_P5600:
1939         mipspmu.name = "mips/P5600";
1940         mipspmu.general_event_map = &mipsxxcore_event_map2;
1941         mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1942         break;
1943     case CPU_P6600:
1944         mipspmu.name = "mips/P6600";
1945         mipspmu.general_event_map = &mipsxxcore_event_map2;
1946         mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1947         break;
1948     case CPU_I6400:
1949         mipspmu.name = "mips/I6400";
1950         mipspmu.general_event_map = &i6x00_event_map;
1951         mipspmu.cache_event_map = &i6x00_cache_map;
1952         break;
1953     case CPU_I6500:
1954         mipspmu.name = "mips/I6500";
1955         mipspmu.general_event_map = &i6x00_event_map;
1956         mipspmu.cache_event_map = &i6x00_cache_map;
1957         break;
1958     case CPU_1004K:
1959         mipspmu.name = "mips/1004K";
1960         mipspmu.general_event_map = &mipsxxcore_event_map;
1961         mipspmu.cache_event_map = &mipsxxcore_cache_map;
1962         break;
1963     case CPU_1074K:
1964         mipspmu.name = "mips/1074K";
1965         mipspmu.general_event_map = &mipsxxcore_event_map;
1966         mipspmu.cache_event_map = &mipsxxcore_cache_map;
1967         break;
1968     case CPU_INTERAPTIV:
1969         mipspmu.name = "mips/interAptiv";
1970         mipspmu.general_event_map = &mipsxxcore_event_map;
1971         mipspmu.cache_event_map = &mipsxxcore_cache_map;
1972         break;
1973     case CPU_LOONGSON32:
1974         mipspmu.name = "mips/loongson1";
1975         mipspmu.general_event_map = &mipsxxcore_event_map;
1976         mipspmu.cache_event_map = &mipsxxcore_cache_map;
1977         break;
1978     case CPU_LOONGSON64:
1979         mipspmu.name = "mips/loongson3";
1980         pmu_type = get_loongson3_pmu_type();
1981 
1982         switch (pmu_type) {
1983         case LOONGSON_PMU_TYPE1:
1984             counters = 2;
1985             mipspmu.general_event_map = &loongson3_event_map1;
1986             mipspmu.cache_event_map = &loongson3_cache_map1;
1987             break;
1988         case LOONGSON_PMU_TYPE2:
1989             counters = 4;
1990             mipspmu.general_event_map = &loongson3_event_map2;
1991             mipspmu.cache_event_map = &loongson3_cache_map2;
1992             break;
1993         case LOONGSON_PMU_TYPE3:
1994             counters = 4;
1995             mipspmu.general_event_map = &loongson3_event_map3;
1996             mipspmu.cache_event_map = &loongson3_cache_map3;
1997             break;
1998         }
1999         break;
2000     case CPU_CAVIUM_OCTEON:
2001     case CPU_CAVIUM_OCTEON_PLUS:
2002     case CPU_CAVIUM_OCTEON2:
2003     case CPU_CAVIUM_OCTEON3:
2004         mipspmu.name = "octeon";
2005         mipspmu.general_event_map = &octeon_event_map;
2006         mipspmu.cache_event_map = &octeon_cache_map;
2007         mipspmu.map_raw_event = octeon_pmu_map_raw_event;
2008         break;
2009     case CPU_BMIPS5000:
2010         mipspmu.name = "BMIPS5000";
2011         mipspmu.general_event_map = &bmips5000_event_map;
2012         mipspmu.cache_event_map = &bmips5000_cache_map;
2013         break;
2014     default:
2015         pr_cont("Either hardware does not support performance "
2016             "counters, or not yet implemented.\n");
2017         return -ENODEV;
2018     }
2019 
2020     mipspmu.num_counters = counters;
2021     mipspmu.irq = irq;
2022 
2023     if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
2024         if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
2025             counter_bits = 48;
2026             mipspmu.max_period = (1ULL << 47) - 1;
2027             mipspmu.valid_count = (1ULL << 47) - 1;
2028             mipspmu.overflow = 1ULL << 47;
2029         } else {
2030             counter_bits = 64;
2031             mipspmu.max_period = (1ULL << 63) - 1;
2032             mipspmu.valid_count = (1ULL << 63) - 1;
2033             mipspmu.overflow = 1ULL << 63;
2034         }
2035         mipspmu.read_counter = mipsxx_pmu_read_counter_64;
2036         mipspmu.write_counter = mipsxx_pmu_write_counter_64;
2037     } else {
2038         counter_bits = 32;
2039         mipspmu.max_period = (1ULL << 31) - 1;
2040         mipspmu.valid_count = (1ULL << 31) - 1;
2041         mipspmu.overflow = 1ULL << 31;
2042         mipspmu.read_counter = mipsxx_pmu_read_counter;
2043         mipspmu.write_counter = mipsxx_pmu_write_counter;
2044     }
2045 
2046     on_each_cpu(reset_counters, (void *)(long)counters, 1);
2047 
2048     pr_cont("%s PMU enabled, %d %d-bit counters available to each "
2049         "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
2050         irq < 0 ? " (share with timer interrupt)" : "");
2051 
2052     perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2053 
2054     return 0;
2055 }
2056 early_initcall(init_hw_perf_events);