Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * VGICv2 MMIO handling functions
0004  */
0005 
0006 #include <linux/irqchip/arm-gic.h>
0007 #include <linux/kvm.h>
0008 #include <linux/kvm_host.h>
0009 #include <linux/nospec.h>
0010 
0011 #include <kvm/iodev.h>
0012 #include <kvm/arm_vgic.h>
0013 
0014 #include "vgic.h"
0015 #include "vgic-mmio.h"
0016 
0017 /*
0018  * The Revision field in the IIDR have the following meanings:
0019  *
0020  * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
0021  * Revision 2: Interrupt groups are guest-configurable and signaled using
0022  *         their configured groups.
0023  */
0024 
0025 static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
0026                         gpa_t addr, unsigned int len)
0027 {
0028     struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
0029     u32 value;
0030 
0031     switch (addr & 0x0c) {
0032     case GIC_DIST_CTRL:
0033         value = vgic->enabled ? GICD_ENABLE : 0;
0034         break;
0035     case GIC_DIST_CTR:
0036         value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
0037         value = (value >> 5) - 1;
0038         value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
0039         break;
0040     case GIC_DIST_IIDR:
0041         value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
0042             (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
0043             (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
0044         break;
0045     default:
0046         return 0;
0047     }
0048 
0049     return value;
0050 }
0051 
0052 static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
0053                     gpa_t addr, unsigned int len,
0054                     unsigned long val)
0055 {
0056     struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
0057     bool was_enabled = dist->enabled;
0058 
0059     switch (addr & 0x0c) {
0060     case GIC_DIST_CTRL:
0061         dist->enabled = val & GICD_ENABLE;
0062         if (!was_enabled && dist->enabled)
0063             vgic_kick_vcpus(vcpu->kvm);
0064         break;
0065     case GIC_DIST_CTR:
0066     case GIC_DIST_IIDR:
0067         /* Nothing to do */
0068         return;
0069     }
0070 }
0071 
0072 static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
0073                        gpa_t addr, unsigned int len,
0074                        unsigned long val)
0075 {
0076     struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
0077     u32 reg;
0078 
0079     switch (addr & 0x0c) {
0080     case GIC_DIST_IIDR:
0081         reg = vgic_mmio_read_v2_misc(vcpu, addr, len);
0082         if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
0083             return -EINVAL;
0084 
0085         /*
0086          * If we observe a write to GICD_IIDR we know that userspace
0087          * has been updated and has had a chance to cope with older
0088          * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
0089          * interrupts as group 1, and therefore we now allow groups to
0090          * be user writable.  Doing this by default would break
0091          * migration from old kernels to new kernels with legacy
0092          * userspace.
0093          */
0094         reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
0095         switch (reg) {
0096         case KVM_VGIC_IMP_REV_2:
0097         case KVM_VGIC_IMP_REV_3:
0098             vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
0099             dist->implementation_rev = reg;
0100             return 0;
0101         default:
0102             return -EINVAL;
0103         }
0104     }
0105 
0106     vgic_mmio_write_v2_misc(vcpu, addr, len, val);
0107     return 0;
0108 }
0109 
0110 static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
0111                         gpa_t addr, unsigned int len,
0112                         unsigned long val)
0113 {
0114     if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
0115         vgic_mmio_write_group(vcpu, addr, len, val);
0116 
0117     return 0;
0118 }
0119 
0120 static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
0121                  gpa_t addr, unsigned int len,
0122                  unsigned long val)
0123 {
0124     int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
0125     int intid = val & 0xf;
0126     int targets = (val >> 16) & 0xff;
0127     int mode = (val >> 24) & 0x03;
0128     struct kvm_vcpu *vcpu;
0129     unsigned long flags, c;
0130 
0131     switch (mode) {
0132     case 0x0:       /* as specified by targets */
0133         break;
0134     case 0x1:
0135         targets = (1U << nr_vcpus) - 1;         /* all, ... */
0136         targets &= ~(1U << source_vcpu->vcpu_id);   /* but self */
0137         break;
0138     case 0x2:       /* this very vCPU only */
0139         targets = (1U << source_vcpu->vcpu_id);
0140         break;
0141     case 0x3:       /* reserved */
0142         return;
0143     }
0144 
0145     kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
0146         struct vgic_irq *irq;
0147 
0148         if (!(targets & (1U << c)))
0149             continue;
0150 
0151         irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
0152 
0153         raw_spin_lock_irqsave(&irq->irq_lock, flags);
0154         irq->pending_latch = true;
0155         irq->source |= 1U << source_vcpu->vcpu_id;
0156 
0157         vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
0158         vgic_put_irq(source_vcpu->kvm, irq);
0159     }
0160 }
0161 
0162 static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
0163                        gpa_t addr, unsigned int len)
0164 {
0165     u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
0166     int i;
0167     u64 val = 0;
0168 
0169     for (i = 0; i < len; i++) {
0170         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
0171 
0172         val |= (u64)irq->targets << (i * 8);
0173 
0174         vgic_put_irq(vcpu->kvm, irq);
0175     }
0176 
0177     return val;
0178 }
0179 
0180 static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
0181                    gpa_t addr, unsigned int len,
0182                    unsigned long val)
0183 {
0184     u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
0185     u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
0186     int i;
0187     unsigned long flags;
0188 
0189     /* GICD_ITARGETSR[0-7] are read-only */
0190     if (intid < VGIC_NR_PRIVATE_IRQS)
0191         return;
0192 
0193     for (i = 0; i < len; i++) {
0194         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
0195         int target;
0196 
0197         raw_spin_lock_irqsave(&irq->irq_lock, flags);
0198 
0199         irq->targets = (val >> (i * 8)) & cpu_mask;
0200         target = irq->targets ? __ffs(irq->targets) : 0;
0201         irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
0202 
0203         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
0204         vgic_put_irq(vcpu->kvm, irq);
0205     }
0206 }
0207 
0208 static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
0209                         gpa_t addr, unsigned int len)
0210 {
0211     u32 intid = addr & 0x0f;
0212     int i;
0213     u64 val = 0;
0214 
0215     for (i = 0; i < len; i++) {
0216         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
0217 
0218         val |= (u64)irq->source << (i * 8);
0219 
0220         vgic_put_irq(vcpu->kvm, irq);
0221     }
0222     return val;
0223 }
0224 
0225 static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
0226                      gpa_t addr, unsigned int len,
0227                      unsigned long val)
0228 {
0229     u32 intid = addr & 0x0f;
0230     int i;
0231     unsigned long flags;
0232 
0233     for (i = 0; i < len; i++) {
0234         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
0235 
0236         raw_spin_lock_irqsave(&irq->irq_lock, flags);
0237 
0238         irq->source &= ~((val >> (i * 8)) & 0xff);
0239         if (!irq->source)
0240             irq->pending_latch = false;
0241 
0242         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
0243         vgic_put_irq(vcpu->kvm, irq);
0244     }
0245 }
0246 
0247 static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
0248                      gpa_t addr, unsigned int len,
0249                      unsigned long val)
0250 {
0251     u32 intid = addr & 0x0f;
0252     int i;
0253     unsigned long flags;
0254 
0255     for (i = 0; i < len; i++) {
0256         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
0257 
0258         raw_spin_lock_irqsave(&irq->irq_lock, flags);
0259 
0260         irq->source |= (val >> (i * 8)) & 0xff;
0261 
0262         if (irq->source) {
0263             irq->pending_latch = true;
0264             vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
0265         } else {
0266             raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
0267         }
0268         vgic_put_irq(vcpu->kvm, irq);
0269     }
0270 }
0271 
0272 #define GICC_ARCH_VERSION_V2    0x2
0273 
0274 /* These are for userland accesses only, there is no guest-facing emulation. */
0275 static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
0276                        gpa_t addr, unsigned int len)
0277 {
0278     struct vgic_vmcr vmcr;
0279     u32 val;
0280 
0281     vgic_get_vmcr(vcpu, &vmcr);
0282 
0283     switch (addr & 0xff) {
0284     case GIC_CPU_CTRL:
0285         val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
0286         val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
0287         val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
0288         val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
0289         val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
0290         val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
0291 
0292         break;
0293     case GIC_CPU_PRIMASK:
0294         /*
0295          * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
0296          * PMR field as GICH_VMCR.VMPriMask rather than
0297          * GICC_PMR.Priority, so we expose the upper five bits of
0298          * priority mask to userspace using the lower bits in the
0299          * unsigned long.
0300          */
0301         val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
0302             GICV_PMR_PRIORITY_SHIFT;
0303         break;
0304     case GIC_CPU_BINPOINT:
0305         val = vmcr.bpr;
0306         break;
0307     case GIC_CPU_ALIAS_BINPOINT:
0308         val = vmcr.abpr;
0309         break;
0310     case GIC_CPU_IDENT:
0311         val = ((PRODUCT_ID_KVM << 20) |
0312                (GICC_ARCH_VERSION_V2 << 16) |
0313                IMPLEMENTER_ARM);
0314         break;
0315     default:
0316         return 0;
0317     }
0318 
0319     return val;
0320 }
0321 
0322 static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
0323                    gpa_t addr, unsigned int len,
0324                    unsigned long val)
0325 {
0326     struct vgic_vmcr vmcr;
0327 
0328     vgic_get_vmcr(vcpu, &vmcr);
0329 
0330     switch (addr & 0xff) {
0331     case GIC_CPU_CTRL:
0332         vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
0333         vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
0334         vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
0335         vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
0336         vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
0337         vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
0338 
0339         break;
0340     case GIC_CPU_PRIMASK:
0341         /*
0342          * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
0343          * PMR field as GICH_VMCR.VMPriMask rather than
0344          * GICC_PMR.Priority, so we expose the upper five bits of
0345          * priority mask to userspace using the lower bits in the
0346          * unsigned long.
0347          */
0348         vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
0349             GICV_PMR_PRIORITY_MASK;
0350         break;
0351     case GIC_CPU_BINPOINT:
0352         vmcr.bpr = val;
0353         break;
0354     case GIC_CPU_ALIAS_BINPOINT:
0355         vmcr.abpr = val;
0356         break;
0357     }
0358 
0359     vgic_set_vmcr(vcpu, &vmcr);
0360 }
0361 
0362 static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
0363                     gpa_t addr, unsigned int len)
0364 {
0365     int n; /* which APRn is this */
0366 
0367     n = (addr >> 2) & 0x3;
0368 
0369     if (kvm_vgic_global_state.type == VGIC_V2) {
0370         /* GICv2 hardware systems support max. 32 groups */
0371         if (n != 0)
0372             return 0;
0373         return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
0374     } else {
0375         struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
0376 
0377         if (n > vgic_v3_max_apr_idx(vcpu))
0378             return 0;
0379 
0380         n = array_index_nospec(n, 4);
0381 
0382         /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
0383         return vgicv3->vgic_ap1r[n];
0384     }
0385 }
0386 
0387 static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
0388                 gpa_t addr, unsigned int len,
0389                 unsigned long val)
0390 {
0391     int n; /* which APRn is this */
0392 
0393     n = (addr >> 2) & 0x3;
0394 
0395     if (kvm_vgic_global_state.type == VGIC_V2) {
0396         /* GICv2 hardware systems support max. 32 groups */
0397         if (n != 0)
0398             return;
0399         vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
0400     } else {
0401         struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
0402 
0403         if (n > vgic_v3_max_apr_idx(vcpu))
0404             return;
0405 
0406         n = array_index_nospec(n, 4);
0407 
0408         /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
0409         vgicv3->vgic_ap1r[n] = val;
0410     }
0411 }
0412 
0413 static const struct vgic_register_region vgic_v2_dist_registers[] = {
0414     REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
0415         vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
0416         NULL, vgic_mmio_uaccess_write_v2_misc,
0417         12, VGIC_ACCESS_32bit),
0418     REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
0419         vgic_mmio_read_group, vgic_mmio_write_group,
0420         NULL, vgic_mmio_uaccess_write_v2_group, 1,
0421         VGIC_ACCESS_32bit),
0422     REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
0423         vgic_mmio_read_enable, vgic_mmio_write_senable,
0424         NULL, vgic_uaccess_write_senable, 1,
0425         VGIC_ACCESS_32bit),
0426     REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
0427         vgic_mmio_read_enable, vgic_mmio_write_cenable,
0428         NULL, vgic_uaccess_write_cenable, 1,
0429         VGIC_ACCESS_32bit),
0430     REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
0431         vgic_mmio_read_pending, vgic_mmio_write_spending,
0432         vgic_uaccess_read_pending, vgic_uaccess_write_spending, 1,
0433         VGIC_ACCESS_32bit),
0434     REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
0435         vgic_mmio_read_pending, vgic_mmio_write_cpending,
0436         vgic_uaccess_read_pending, vgic_uaccess_write_cpending, 1,
0437         VGIC_ACCESS_32bit),
0438     REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
0439         vgic_mmio_read_active, vgic_mmio_write_sactive,
0440         vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
0441         VGIC_ACCESS_32bit),
0442     REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
0443         vgic_mmio_read_active, vgic_mmio_write_cactive,
0444         vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
0445         VGIC_ACCESS_32bit),
0446     REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
0447         vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
0448         8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
0449     REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
0450         vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
0451         VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
0452     REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
0453         vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
0454         VGIC_ACCESS_32bit),
0455     REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
0456         vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
0457         VGIC_ACCESS_32bit),
0458     REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
0459         vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
0460         VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
0461     REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
0462         vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
0463         VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
0464 };
0465 
0466 static const struct vgic_register_region vgic_v2_cpu_registers[] = {
0467     REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
0468         vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
0469         VGIC_ACCESS_32bit),
0470     REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
0471         vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
0472         VGIC_ACCESS_32bit),
0473     REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
0474         vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
0475         VGIC_ACCESS_32bit),
0476     REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
0477         vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
0478         VGIC_ACCESS_32bit),
0479     REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
0480         vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
0481         VGIC_ACCESS_32bit),
0482     REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
0483         vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
0484         VGIC_ACCESS_32bit),
0485 };
0486 
0487 unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
0488 {
0489     dev->regions = vgic_v2_dist_registers;
0490     dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
0491 
0492     kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
0493 
0494     return SZ_4K;
0495 }
0496 
0497 int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
0498 {
0499     const struct vgic_register_region *region;
0500     struct vgic_io_device iodev;
0501     struct vgic_reg_attr reg_attr;
0502     struct kvm_vcpu *vcpu;
0503     gpa_t addr;
0504     int ret;
0505 
0506     ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
0507     if (ret)
0508         return ret;
0509 
0510     vcpu = reg_attr.vcpu;
0511     addr = reg_attr.addr;
0512 
0513     switch (attr->group) {
0514     case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
0515         iodev.regions = vgic_v2_dist_registers;
0516         iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
0517         iodev.base_addr = 0;
0518         break;
0519     case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
0520         iodev.regions = vgic_v2_cpu_registers;
0521         iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
0522         iodev.base_addr = 0;
0523         break;
0524     default:
0525         return -ENXIO;
0526     }
0527 
0528     /* We only support aligned 32-bit accesses. */
0529     if (addr & 3)
0530         return -ENXIO;
0531 
0532     region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
0533     if (!region)
0534         return -ENXIO;
0535 
0536     return 0;
0537 }
0538 
0539 int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
0540               int offset, u32 *val)
0541 {
0542     struct vgic_io_device dev = {
0543         .regions = vgic_v2_cpu_registers,
0544         .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
0545         .iodev_type = IODEV_CPUIF,
0546     };
0547 
0548     return vgic_uaccess(vcpu, &dev, is_write, offset, val);
0549 }
0550 
0551 int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
0552              int offset, u32 *val)
0553 {
0554     struct vgic_io_device dev = {
0555         .regions = vgic_v2_dist_registers,
0556         .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
0557         .iodev_type = IODEV_DIST,
0558     };
0559 
0560     return vgic_uaccess(vcpu, &dev, is_write, offset, val);
0561 }