Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (C) 2012,2013 - ARM Ltd
0004  * Author: Marc Zyngier <marc.zyngier@arm.com>
0005  *
0006  * Derived from arch/arm/kvm/coproc.c:
0007  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
0008  * Authors: Rusty Russell <rusty@rustcorp.com.au>
0009  *          Christoffer Dall <c.dall@virtualopensystems.com>
0010  */
0011 
0012 #include <linux/bitfield.h>
0013 #include <linux/bsearch.h>
0014 #include <linux/kvm_host.h>
0015 #include <linux/mm.h>
0016 #include <linux/printk.h>
0017 #include <linux/uaccess.h>
0018 
0019 #include <asm/cacheflush.h>
0020 #include <asm/cputype.h>
0021 #include <asm/debug-monitors.h>
0022 #include <asm/esr.h>
0023 #include <asm/kvm_arm.h>
0024 #include <asm/kvm_emulate.h>
0025 #include <asm/kvm_hyp.h>
0026 #include <asm/kvm_mmu.h>
0027 #include <asm/perf_event.h>
0028 #include <asm/sysreg.h>
0029 
0030 #include <trace/events/kvm.h>
0031 
0032 #include "sys_regs.h"
0033 
0034 #include "trace.h"
0035 
0036 /*
0037  * For AArch32, we only take care of what is being trapped. Anything
0038  * that has to do with init and userspace access has to go via the
0039  * 64bit interface.
0040  */
0041 
0042 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
0043 
0044 static bool read_from_write_only(struct kvm_vcpu *vcpu,
0045                  struct sys_reg_params *params,
0046                  const struct sys_reg_desc *r)
0047 {
0048     WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
0049     print_sys_reg_instr(params);
0050     kvm_inject_undefined(vcpu);
0051     return false;
0052 }
0053 
0054 static bool write_to_read_only(struct kvm_vcpu *vcpu,
0055                    struct sys_reg_params *params,
0056                    const struct sys_reg_desc *r)
0057 {
0058     WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
0059     print_sys_reg_instr(params);
0060     kvm_inject_undefined(vcpu);
0061     return false;
0062 }
0063 
0064 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
0065 {
0066     u64 val = 0x8badf00d8badf00d;
0067 
0068     if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
0069         __vcpu_read_sys_reg_from_cpu(reg, &val))
0070         return val;
0071 
0072     return __vcpu_sys_reg(vcpu, reg);
0073 }
0074 
0075 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
0076 {
0077     if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
0078         __vcpu_write_sys_reg_to_cpu(val, reg))
0079         return;
0080 
0081      __vcpu_sys_reg(vcpu, reg) = val;
0082 }
0083 
0084 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
0085 static u32 cache_levels;
0086 
0087 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
0088 #define CSSELR_MAX 14
0089 
0090 /* Which cache CCSIDR represents depends on CSSELR value. */
0091 static u32 get_ccsidr(u32 csselr)
0092 {
0093     u32 ccsidr;
0094 
0095     /* Make sure noone else changes CSSELR during this! */
0096     local_irq_disable();
0097     write_sysreg(csselr, csselr_el1);
0098     isb();
0099     ccsidr = read_sysreg(ccsidr_el1);
0100     local_irq_enable();
0101 
0102     return ccsidr;
0103 }
0104 
0105 /*
0106  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
0107  */
0108 static bool access_dcsw(struct kvm_vcpu *vcpu,
0109             struct sys_reg_params *p,
0110             const struct sys_reg_desc *r)
0111 {
0112     if (!p->is_write)
0113         return read_from_write_only(vcpu, p, r);
0114 
0115     /*
0116      * Only track S/W ops if we don't have FWB. It still indicates
0117      * that the guest is a bit broken (S/W operations should only
0118      * be done by firmware, knowing that there is only a single
0119      * CPU left in the system, and certainly not from non-secure
0120      * software).
0121      */
0122     if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
0123         kvm_set_way_flush(vcpu);
0124 
0125     return true;
0126 }
0127 
0128 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
0129 {
0130     switch (r->aarch32_map) {
0131     case AA32_LO:
0132         *mask = GENMASK_ULL(31, 0);
0133         *shift = 0;
0134         break;
0135     case AA32_HI:
0136         *mask = GENMASK_ULL(63, 32);
0137         *shift = 32;
0138         break;
0139     default:
0140         *mask = GENMASK_ULL(63, 0);
0141         *shift = 0;
0142         break;
0143     }
0144 }
0145 
0146 /*
0147  * Generic accessor for VM registers. Only called as long as HCR_TVM
0148  * is set. If the guest enables the MMU, we stop trapping the VM
0149  * sys_regs and leave it in complete control of the caches.
0150  */
0151 static bool access_vm_reg(struct kvm_vcpu *vcpu,
0152               struct sys_reg_params *p,
0153               const struct sys_reg_desc *r)
0154 {
0155     bool was_enabled = vcpu_has_cache_enabled(vcpu);
0156     u64 val, mask, shift;
0157 
0158     BUG_ON(!p->is_write);
0159 
0160     get_access_mask(r, &mask, &shift);
0161 
0162     if (~mask) {
0163         val = vcpu_read_sys_reg(vcpu, r->reg);
0164         val &= ~mask;
0165     } else {
0166         val = 0;
0167     }
0168 
0169     val |= (p->regval & (mask >> shift)) << shift;
0170     vcpu_write_sys_reg(vcpu, val, r->reg);
0171 
0172     kvm_toggle_cache(vcpu, was_enabled);
0173     return true;
0174 }
0175 
0176 static bool access_actlr(struct kvm_vcpu *vcpu,
0177              struct sys_reg_params *p,
0178              const struct sys_reg_desc *r)
0179 {
0180     u64 mask, shift;
0181 
0182     if (p->is_write)
0183         return ignore_write(vcpu, p);
0184 
0185     get_access_mask(r, &mask, &shift);
0186     p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
0187 
0188     return true;
0189 }
0190 
0191 /*
0192  * Trap handler for the GICv3 SGI generation system register.
0193  * Forward the request to the VGIC emulation.
0194  * The cp15_64 code makes sure this automatically works
0195  * for both AArch64 and AArch32 accesses.
0196  */
0197 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
0198                struct sys_reg_params *p,
0199                const struct sys_reg_desc *r)
0200 {
0201     bool g1;
0202 
0203     if (!p->is_write)
0204         return read_from_write_only(vcpu, p, r);
0205 
0206     /*
0207      * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
0208      * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
0209      * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
0210      * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
0211      * group.
0212      */
0213     if (p->Op0 == 0) {      /* AArch32 */
0214         switch (p->Op1) {
0215         default:        /* Keep GCC quiet */
0216         case 0:         /* ICC_SGI1R */
0217             g1 = true;
0218             break;
0219         case 1:         /* ICC_ASGI1R */
0220         case 2:         /* ICC_SGI0R */
0221             g1 = false;
0222             break;
0223         }
0224     } else {            /* AArch64 */
0225         switch (p->Op2) {
0226         default:        /* Keep GCC quiet */
0227         case 5:         /* ICC_SGI1R_EL1 */
0228             g1 = true;
0229             break;
0230         case 6:         /* ICC_ASGI1R_EL1 */
0231         case 7:         /* ICC_SGI0R_EL1 */
0232             g1 = false;
0233             break;
0234         }
0235     }
0236 
0237     vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
0238 
0239     return true;
0240 }
0241 
0242 static bool access_gic_sre(struct kvm_vcpu *vcpu,
0243                struct sys_reg_params *p,
0244                const struct sys_reg_desc *r)
0245 {
0246     if (p->is_write)
0247         return ignore_write(vcpu, p);
0248 
0249     p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
0250     return true;
0251 }
0252 
0253 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
0254             struct sys_reg_params *p,
0255             const struct sys_reg_desc *r)
0256 {
0257     if (p->is_write)
0258         return ignore_write(vcpu, p);
0259     else
0260         return read_zero(vcpu, p);
0261 }
0262 
0263 /*
0264  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
0265  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
0266  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
0267  * treat it separately.
0268  */
0269 static bool trap_loregion(struct kvm_vcpu *vcpu,
0270               struct sys_reg_params *p,
0271               const struct sys_reg_desc *r)
0272 {
0273     u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
0274     u32 sr = reg_to_encoding(r);
0275 
0276     if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
0277         kvm_inject_undefined(vcpu);
0278         return false;
0279     }
0280 
0281     if (p->is_write && sr == SYS_LORID_EL1)
0282         return write_to_read_only(vcpu, p, r);
0283 
0284     return trap_raz_wi(vcpu, p, r);
0285 }
0286 
0287 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
0288                struct sys_reg_params *p,
0289                const struct sys_reg_desc *r)
0290 {
0291     u64 oslsr;
0292 
0293     if (!p->is_write)
0294         return read_from_write_only(vcpu, p, r);
0295 
0296     /* Forward the OSLK bit to OSLSR */
0297     oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
0298     if (p->regval & SYS_OSLAR_OSLK)
0299         oslsr |= SYS_OSLSR_OSLK;
0300 
0301     __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
0302     return true;
0303 }
0304 
0305 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
0306                struct sys_reg_params *p,
0307                const struct sys_reg_desc *r)
0308 {
0309     if (p->is_write)
0310         return write_to_read_only(vcpu, p, r);
0311 
0312     p->regval = __vcpu_sys_reg(vcpu, r->reg);
0313     return true;
0314 }
0315 
0316 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
0317              u64 val)
0318 {
0319     /*
0320      * The only modifiable bit is the OSLK bit. Refuse the write if
0321      * userspace attempts to change any other bit in the register.
0322      */
0323     if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
0324         return -EINVAL;
0325 
0326     __vcpu_sys_reg(vcpu, rd->reg) = val;
0327     return 0;
0328 }
0329 
0330 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
0331                    struct sys_reg_params *p,
0332                    const struct sys_reg_desc *r)
0333 {
0334     if (p->is_write) {
0335         return ignore_write(vcpu, p);
0336     } else {
0337         p->regval = read_sysreg(dbgauthstatus_el1);
0338         return true;
0339     }
0340 }
0341 
0342 /*
0343  * We want to avoid world-switching all the DBG registers all the
0344  * time:
0345  *
0346  * - If we've touched any debug register, it is likely that we're
0347  *   going to touch more of them. It then makes sense to disable the
0348  *   traps and start doing the save/restore dance
0349  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
0350  *   then mandatory to save/restore the registers, as the guest
0351  *   depends on them.
0352  *
0353  * For this, we use a DIRTY bit, indicating the guest has modified the
0354  * debug registers, used as follow:
0355  *
0356  * On guest entry:
0357  * - If the dirty bit is set (because we're coming back from trapping),
0358  *   disable the traps, save host registers, restore guest registers.
0359  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
0360  *   set the dirty bit, disable the traps, save host registers,
0361  *   restore guest registers.
0362  * - Otherwise, enable the traps
0363  *
0364  * On guest exit:
0365  * - If the dirty bit is set, save guest registers, restore host
0366  *   registers and clear the dirty bit. This ensure that the host can
0367  *   now use the debug registers.
0368  */
0369 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
0370                 struct sys_reg_params *p,
0371                 const struct sys_reg_desc *r)
0372 {
0373     if (p->is_write) {
0374         vcpu_write_sys_reg(vcpu, p->regval, r->reg);
0375         vcpu_set_flag(vcpu, DEBUG_DIRTY);
0376     } else {
0377         p->regval = vcpu_read_sys_reg(vcpu, r->reg);
0378     }
0379 
0380     trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
0381 
0382     return true;
0383 }
0384 
0385 /*
0386  * reg_to_dbg/dbg_to_reg
0387  *
0388  * A 32 bit write to a debug register leave top bits alone
0389  * A 32 bit read from a debug register only returns the bottom bits
0390  *
0391  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
0392  * switches between host and guest values in future.
0393  */
0394 static void reg_to_dbg(struct kvm_vcpu *vcpu,
0395                struct sys_reg_params *p,
0396                const struct sys_reg_desc *rd,
0397                u64 *dbg_reg)
0398 {
0399     u64 mask, shift, val;
0400 
0401     get_access_mask(rd, &mask, &shift);
0402 
0403     val = *dbg_reg;
0404     val &= ~mask;
0405     val |= (p->regval & (mask >> shift)) << shift;
0406     *dbg_reg = val;
0407 
0408     vcpu_set_flag(vcpu, DEBUG_DIRTY);
0409 }
0410 
0411 static void dbg_to_reg(struct kvm_vcpu *vcpu,
0412                struct sys_reg_params *p,
0413                const struct sys_reg_desc *rd,
0414                u64 *dbg_reg)
0415 {
0416     u64 mask, shift;
0417 
0418     get_access_mask(rd, &mask, &shift);
0419     p->regval = (*dbg_reg & mask) >> shift;
0420 }
0421 
0422 static bool trap_bvr(struct kvm_vcpu *vcpu,
0423              struct sys_reg_params *p,
0424              const struct sys_reg_desc *rd)
0425 {
0426     u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
0427 
0428     if (p->is_write)
0429         reg_to_dbg(vcpu, p, rd, dbg_reg);
0430     else
0431         dbg_to_reg(vcpu, p, rd, dbg_reg);
0432 
0433     trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
0434 
0435     return true;
0436 }
0437 
0438 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
0439            u64 val)
0440 {
0441     vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
0442     return 0;
0443 }
0444 
0445 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
0446            u64 *val)
0447 {
0448     *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
0449     return 0;
0450 }
0451 
0452 static void reset_bvr(struct kvm_vcpu *vcpu,
0453               const struct sys_reg_desc *rd)
0454 {
0455     vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
0456 }
0457 
0458 static bool trap_bcr(struct kvm_vcpu *vcpu,
0459              struct sys_reg_params *p,
0460              const struct sys_reg_desc *rd)
0461 {
0462     u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
0463 
0464     if (p->is_write)
0465         reg_to_dbg(vcpu, p, rd, dbg_reg);
0466     else
0467         dbg_to_reg(vcpu, p, rd, dbg_reg);
0468 
0469     trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
0470 
0471     return true;
0472 }
0473 
0474 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
0475            u64 val)
0476 {
0477     vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
0478     return 0;
0479 }
0480 
0481 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
0482            u64 *val)
0483 {
0484     *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
0485     return 0;
0486 }
0487 
0488 static void reset_bcr(struct kvm_vcpu *vcpu,
0489               const struct sys_reg_desc *rd)
0490 {
0491     vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
0492 }
0493 
0494 static bool trap_wvr(struct kvm_vcpu *vcpu,
0495              struct sys_reg_params *p,
0496              const struct sys_reg_desc *rd)
0497 {
0498     u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
0499 
0500     if (p->is_write)
0501         reg_to_dbg(vcpu, p, rd, dbg_reg);
0502     else
0503         dbg_to_reg(vcpu, p, rd, dbg_reg);
0504 
0505     trace_trap_reg(__func__, rd->CRm, p->is_write,
0506         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
0507 
0508     return true;
0509 }
0510 
0511 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
0512            u64 val)
0513 {
0514     vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
0515     return 0;
0516 }
0517 
0518 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
0519            u64 *val)
0520 {
0521     *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
0522     return 0;
0523 }
0524 
0525 static void reset_wvr(struct kvm_vcpu *vcpu,
0526               const struct sys_reg_desc *rd)
0527 {
0528     vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
0529 }
0530 
0531 static bool trap_wcr(struct kvm_vcpu *vcpu,
0532              struct sys_reg_params *p,
0533              const struct sys_reg_desc *rd)
0534 {
0535     u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
0536 
0537     if (p->is_write)
0538         reg_to_dbg(vcpu, p, rd, dbg_reg);
0539     else
0540         dbg_to_reg(vcpu, p, rd, dbg_reg);
0541 
0542     trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
0543 
0544     return true;
0545 }
0546 
0547 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
0548            u64 val)
0549 {
0550     vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
0551     return 0;
0552 }
0553 
0554 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
0555            u64 *val)
0556 {
0557     *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
0558     return 0;
0559 }
0560 
0561 static void reset_wcr(struct kvm_vcpu *vcpu,
0562               const struct sys_reg_desc *rd)
0563 {
0564     vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
0565 }
0566 
0567 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0568 {
0569     u64 amair = read_sysreg(amair_el1);
0570     vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
0571 }
0572 
0573 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0574 {
0575     u64 actlr = read_sysreg(actlr_el1);
0576     vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
0577 }
0578 
0579 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0580 {
0581     u64 mpidr;
0582 
0583     /*
0584      * Map the vcpu_id into the first three affinity level fields of
0585      * the MPIDR. We limit the number of VCPUs in level 0 due to a
0586      * limitation to 16 CPUs in that level in the ICC_SGIxR registers
0587      * of the GICv3 to be able to address each CPU directly when
0588      * sending IPIs.
0589      */
0590     mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
0591     mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
0592     mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
0593     vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
0594 }
0595 
0596 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
0597                    const struct sys_reg_desc *r)
0598 {
0599     if (kvm_vcpu_has_pmu(vcpu))
0600         return 0;
0601 
0602     return REG_HIDDEN;
0603 }
0604 
0605 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0606 {
0607     u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
0608 
0609     /* No PMU available, any PMU reg may UNDEF... */
0610     if (!kvm_arm_support_pmu_v3())
0611         return;
0612 
0613     n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
0614     n &= ARMV8_PMU_PMCR_N_MASK;
0615     if (n)
0616         mask |= GENMASK(n - 1, 0);
0617 
0618     reset_unknown(vcpu, r);
0619     __vcpu_sys_reg(vcpu, r->reg) &= mask;
0620 }
0621 
0622 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0623 {
0624     reset_unknown(vcpu, r);
0625     __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
0626 }
0627 
0628 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0629 {
0630     reset_unknown(vcpu, r);
0631     __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
0632 }
0633 
0634 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0635 {
0636     reset_unknown(vcpu, r);
0637     __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
0638 }
0639 
0640 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
0641 {
0642     u64 pmcr, val;
0643 
0644     /* No PMU available, PMCR_EL0 may UNDEF... */
0645     if (!kvm_arm_support_pmu_v3())
0646         return;
0647 
0648     pmcr = read_sysreg(pmcr_el0);
0649     /*
0650      * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
0651      * except PMCR.E resetting to zero.
0652      */
0653     val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
0654            | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
0655     if (!kvm_supports_32bit_el0())
0656         val |= ARMV8_PMU_PMCR_LC;
0657     __vcpu_sys_reg(vcpu, r->reg) = val;
0658 }
0659 
0660 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
0661 {
0662     u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
0663     bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
0664 
0665     if (!enabled)
0666         kvm_inject_undefined(vcpu);
0667 
0668     return !enabled;
0669 }
0670 
0671 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
0672 {
0673     return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
0674 }
0675 
0676 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
0677 {
0678     return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
0679 }
0680 
0681 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
0682 {
0683     return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
0684 }
0685 
0686 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
0687 {
0688     return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
0689 }
0690 
0691 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
0692             const struct sys_reg_desc *r)
0693 {
0694     u64 val;
0695 
0696     if (pmu_access_el0_disabled(vcpu))
0697         return false;
0698 
0699     if (p->is_write) {
0700         /* Only update writeable bits of PMCR */
0701         val = __vcpu_sys_reg(vcpu, PMCR_EL0);
0702         val &= ~ARMV8_PMU_PMCR_MASK;
0703         val |= p->regval & ARMV8_PMU_PMCR_MASK;
0704         if (!kvm_supports_32bit_el0())
0705             val |= ARMV8_PMU_PMCR_LC;
0706         __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
0707         kvm_pmu_handle_pmcr(vcpu, val);
0708         kvm_vcpu_pmu_restore_guest(vcpu);
0709     } else {
0710         /* PMCR.P & PMCR.C are RAZ */
0711         val = __vcpu_sys_reg(vcpu, PMCR_EL0)
0712               & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
0713         p->regval = val;
0714     }
0715 
0716     return true;
0717 }
0718 
0719 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
0720               const struct sys_reg_desc *r)
0721 {
0722     if (pmu_access_event_counter_el0_disabled(vcpu))
0723         return false;
0724 
0725     if (p->is_write)
0726         __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
0727     else
0728         /* return PMSELR.SEL field */
0729         p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
0730                 & ARMV8_PMU_COUNTER_MASK;
0731 
0732     return true;
0733 }
0734 
0735 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
0736               const struct sys_reg_desc *r)
0737 {
0738     u64 pmceid, mask, shift;
0739 
0740     BUG_ON(p->is_write);
0741 
0742     if (pmu_access_el0_disabled(vcpu))
0743         return false;
0744 
0745     get_access_mask(r, &mask, &shift);
0746 
0747     pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
0748     pmceid &= mask;
0749     pmceid >>= shift;
0750 
0751     p->regval = pmceid;
0752 
0753     return true;
0754 }
0755 
0756 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
0757 {
0758     u64 pmcr, val;
0759 
0760     pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
0761     val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
0762     if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
0763         kvm_inject_undefined(vcpu);
0764         return false;
0765     }
0766 
0767     return true;
0768 }
0769 
0770 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
0771                   struct sys_reg_params *p,
0772                   const struct sys_reg_desc *r)
0773 {
0774     u64 idx = ~0UL;
0775 
0776     if (r->CRn == 9 && r->CRm == 13) {
0777         if (r->Op2 == 2) {
0778             /* PMXEVCNTR_EL0 */
0779             if (pmu_access_event_counter_el0_disabled(vcpu))
0780                 return false;
0781 
0782             idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
0783                   & ARMV8_PMU_COUNTER_MASK;
0784         } else if (r->Op2 == 0) {
0785             /* PMCCNTR_EL0 */
0786             if (pmu_access_cycle_counter_el0_disabled(vcpu))
0787                 return false;
0788 
0789             idx = ARMV8_PMU_CYCLE_IDX;
0790         }
0791     } else if (r->CRn == 0 && r->CRm == 9) {
0792         /* PMCCNTR */
0793         if (pmu_access_event_counter_el0_disabled(vcpu))
0794             return false;
0795 
0796         idx = ARMV8_PMU_CYCLE_IDX;
0797     } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
0798         /* PMEVCNTRn_EL0 */
0799         if (pmu_access_event_counter_el0_disabled(vcpu))
0800             return false;
0801 
0802         idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
0803     }
0804 
0805     /* Catch any decoding mistake */
0806     WARN_ON(idx == ~0UL);
0807 
0808     if (!pmu_counter_idx_valid(vcpu, idx))
0809         return false;
0810 
0811     if (p->is_write) {
0812         if (pmu_access_el0_disabled(vcpu))
0813             return false;
0814 
0815         kvm_pmu_set_counter_value(vcpu, idx, p->regval);
0816     } else {
0817         p->regval = kvm_pmu_get_counter_value(vcpu, idx);
0818     }
0819 
0820     return true;
0821 }
0822 
0823 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
0824                    const struct sys_reg_desc *r)
0825 {
0826     u64 idx, reg;
0827 
0828     if (pmu_access_el0_disabled(vcpu))
0829         return false;
0830 
0831     if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
0832         /* PMXEVTYPER_EL0 */
0833         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
0834         reg = PMEVTYPER0_EL0 + idx;
0835     } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
0836         idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
0837         if (idx == ARMV8_PMU_CYCLE_IDX)
0838             reg = PMCCFILTR_EL0;
0839         else
0840             /* PMEVTYPERn_EL0 */
0841             reg = PMEVTYPER0_EL0 + idx;
0842     } else {
0843         BUG();
0844     }
0845 
0846     if (!pmu_counter_idx_valid(vcpu, idx))
0847         return false;
0848 
0849     if (p->is_write) {
0850         kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
0851         __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
0852         kvm_vcpu_pmu_restore_guest(vcpu);
0853     } else {
0854         p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
0855     }
0856 
0857     return true;
0858 }
0859 
0860 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
0861                const struct sys_reg_desc *r)
0862 {
0863     u64 val, mask;
0864 
0865     if (pmu_access_el0_disabled(vcpu))
0866         return false;
0867 
0868     mask = kvm_pmu_valid_counter_mask(vcpu);
0869     if (p->is_write) {
0870         val = p->regval & mask;
0871         if (r->Op2 & 0x1) {
0872             /* accessing PMCNTENSET_EL0 */
0873             __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
0874             kvm_pmu_enable_counter_mask(vcpu, val);
0875             kvm_vcpu_pmu_restore_guest(vcpu);
0876         } else {
0877             /* accessing PMCNTENCLR_EL0 */
0878             __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
0879             kvm_pmu_disable_counter_mask(vcpu, val);
0880         }
0881     } else {
0882         p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
0883     }
0884 
0885     return true;
0886 }
0887 
0888 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
0889                const struct sys_reg_desc *r)
0890 {
0891     u64 mask = kvm_pmu_valid_counter_mask(vcpu);
0892 
0893     if (check_pmu_access_disabled(vcpu, 0))
0894         return false;
0895 
0896     if (p->is_write) {
0897         u64 val = p->regval & mask;
0898 
0899         if (r->Op2 & 0x1)
0900             /* accessing PMINTENSET_EL1 */
0901             __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
0902         else
0903             /* accessing PMINTENCLR_EL1 */
0904             __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
0905     } else {
0906         p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
0907     }
0908 
0909     return true;
0910 }
0911 
0912 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
0913              const struct sys_reg_desc *r)
0914 {
0915     u64 mask = kvm_pmu_valid_counter_mask(vcpu);
0916 
0917     if (pmu_access_el0_disabled(vcpu))
0918         return false;
0919 
0920     if (p->is_write) {
0921         if (r->CRm & 0x2)
0922             /* accessing PMOVSSET_EL0 */
0923             __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
0924         else
0925             /* accessing PMOVSCLR_EL0 */
0926             __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
0927     } else {
0928         p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
0929     }
0930 
0931     return true;
0932 }
0933 
0934 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
0935                const struct sys_reg_desc *r)
0936 {
0937     u64 mask;
0938 
0939     if (!p->is_write)
0940         return read_from_write_only(vcpu, p, r);
0941 
0942     if (pmu_write_swinc_el0_disabled(vcpu))
0943         return false;
0944 
0945     mask = kvm_pmu_valid_counter_mask(vcpu);
0946     kvm_pmu_software_increment(vcpu, p->regval & mask);
0947     return true;
0948 }
0949 
0950 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
0951                  const struct sys_reg_desc *r)
0952 {
0953     if (p->is_write) {
0954         if (!vcpu_mode_priv(vcpu)) {
0955             kvm_inject_undefined(vcpu);
0956             return false;
0957         }
0958 
0959         __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
0960                    p->regval & ARMV8_PMU_USERENR_MASK;
0961     } else {
0962         p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
0963                 & ARMV8_PMU_USERENR_MASK;
0964     }
0965 
0966     return true;
0967 }
0968 
0969 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
0970 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                  \
0971     { SYS_DESC(SYS_DBGBVRn_EL1(n)),                 \
0972       trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },        \
0973     { SYS_DESC(SYS_DBGBCRn_EL1(n)),                 \
0974       trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },        \
0975     { SYS_DESC(SYS_DBGWVRn_EL1(n)),                 \
0976       trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },       \
0977     { SYS_DESC(SYS_DBGWCRn_EL1(n)),                 \
0978       trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
0979 
0980 #define PMU_SYS_REG(r)                      \
0981     SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
0982 
0983 /* Macro to expand the PMEVCNTRn_EL0 register */
0984 #define PMU_PMEVCNTR_EL0(n)                     \
0985     { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                \
0986       .reset = reset_pmevcntr,                  \
0987       .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
0988 
0989 /* Macro to expand the PMEVTYPERn_EL0 register */
0990 #define PMU_PMEVTYPER_EL0(n)                        \
0991     { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),               \
0992       .reset = reset_pmevtyper,                 \
0993       .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
0994 
0995 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
0996              const struct sys_reg_desc *r)
0997 {
0998     kvm_inject_undefined(vcpu);
0999 
1000     return false;
1001 }
1002 
1003 /* Macro to expand the AMU counter and type registers*/
1004 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1005 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1006 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1007 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1008 
1009 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1010             const struct sys_reg_desc *rd)
1011 {
1012     return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1013 }
1014 
1015 /*
1016  * If we land here on a PtrAuth access, that is because we didn't
1017  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1018  * way this happens is when the guest does not have PtrAuth support
1019  * enabled.
1020  */
1021 #define __PTRAUTH_KEY(k)                        \
1022     { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,       \
1023     .visibility = ptrauth_visibility}
1024 
1025 #define PTRAUTH_KEY(k)                          \
1026     __PTRAUTH_KEY(k ## KEYLO_EL1),                  \
1027     __PTRAUTH_KEY(k ## KEYHI_EL1)
1028 
1029 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1030                   struct sys_reg_params *p,
1031                   const struct sys_reg_desc *r)
1032 {
1033     enum kvm_arch_timers tmr;
1034     enum kvm_arch_timer_regs treg;
1035     u64 reg = reg_to_encoding(r);
1036 
1037     switch (reg) {
1038     case SYS_CNTP_TVAL_EL0:
1039     case SYS_AARCH32_CNTP_TVAL:
1040         tmr = TIMER_PTIMER;
1041         treg = TIMER_REG_TVAL;
1042         break;
1043     case SYS_CNTP_CTL_EL0:
1044     case SYS_AARCH32_CNTP_CTL:
1045         tmr = TIMER_PTIMER;
1046         treg = TIMER_REG_CTL;
1047         break;
1048     case SYS_CNTP_CVAL_EL0:
1049     case SYS_AARCH32_CNTP_CVAL:
1050         tmr = TIMER_PTIMER;
1051         treg = TIMER_REG_CVAL;
1052         break;
1053     default:
1054         BUG();
1055     }
1056 
1057     if (p->is_write)
1058         kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1059     else
1060         p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1061 
1062     return true;
1063 }
1064 
1065 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1066 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1067         struct sys_reg_desc const *r, bool raz)
1068 {
1069     u32 id = reg_to_encoding(r);
1070     u64 val;
1071 
1072     if (raz)
1073         return 0;
1074 
1075     val = read_sanitised_ftr_reg(id);
1076 
1077     switch (id) {
1078     case SYS_ID_AA64PFR0_EL1:
1079         if (!vcpu_has_sve(vcpu))
1080             val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1081         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1082         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1083         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1084         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1085         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1086         if (kvm_vgic_global_state.type == VGIC_V3) {
1087             val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC);
1088             val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1);
1089         }
1090         break;
1091     case SYS_ID_AA64PFR1_EL1:
1092         if (!kvm_has_mte(vcpu->kvm))
1093             val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
1094 
1095         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_SME);
1096         break;
1097     case SYS_ID_AA64ISAR1_EL1:
1098         if (!vcpu_has_ptrauth(vcpu))
1099             val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1100                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1101                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1102                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1103         break;
1104     case SYS_ID_AA64ISAR2_EL1:
1105         if (!vcpu_has_ptrauth(vcpu))
1106             val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1107                  ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1108         if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1109             val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1110         break;
1111     case SYS_ID_AA64DFR0_EL1:
1112         /* Limit debug to ARMv8.0 */
1113         val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1114         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
1115         /* Limit guests to PMUv3 for ARMv8.4 */
1116         val = cpuid_feature_cap_perfmon_field(val,
1117                               ID_AA64DFR0_PMUVER_SHIFT,
1118                               kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1119         /* Hide SPE from guests */
1120         val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
1121         break;
1122     case SYS_ID_DFR0_EL1:
1123         /* Limit guests to PMUv3 for ARMv8.4 */
1124         val = cpuid_feature_cap_perfmon_field(val,
1125                               ID_DFR0_PERFMON_SHIFT,
1126                               kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1127         break;
1128     }
1129 
1130     return val;
1131 }
1132 
1133 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1134                   const struct sys_reg_desc *r)
1135 {
1136     u32 id = reg_to_encoding(r);
1137 
1138     switch (id) {
1139     case SYS_ID_AA64ZFR0_EL1:
1140         if (!vcpu_has_sve(vcpu))
1141             return REG_RAZ;
1142         break;
1143     }
1144 
1145     return 0;
1146 }
1147 
1148 /* cpufeature ID register access trap handlers */
1149 
1150 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1151                 struct sys_reg_params *p,
1152                 const struct sys_reg_desc *r,
1153                 bool raz)
1154 {
1155     if (p->is_write)
1156         return write_to_read_only(vcpu, p, r);
1157 
1158     p->regval = read_id_reg(vcpu, r, raz);
1159     return true;
1160 }
1161 
1162 static bool access_id_reg(struct kvm_vcpu *vcpu,
1163               struct sys_reg_params *p,
1164               const struct sys_reg_desc *r)
1165 {
1166     bool raz = sysreg_visible_as_raz(vcpu, r);
1167 
1168     return __access_id_reg(vcpu, p, r, raz);
1169 }
1170 
1171 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1172                   struct sys_reg_params *p,
1173                   const struct sys_reg_desc *r)
1174 {
1175     return __access_id_reg(vcpu, p, r, true);
1176 }
1177 
1178 /* Visibility overrides for SVE-specific control registers */
1179 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1180                    const struct sys_reg_desc *rd)
1181 {
1182     if (vcpu_has_sve(vcpu))
1183         return 0;
1184 
1185     return REG_HIDDEN;
1186 }
1187 
1188 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1189                    const struct sys_reg_desc *rd,
1190                    u64 val)
1191 {
1192     u8 csv2, csv3;
1193 
1194     /*
1195      * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1196      * it doesn't promise more than what is actually provided (the
1197      * guest could otherwise be covered in ectoplasmic residue).
1198      */
1199     csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1200     if (csv2 > 1 ||
1201         (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1202         return -EINVAL;
1203 
1204     /* Same thing for CSV3 */
1205     csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1206     if (csv3 > 1 ||
1207         (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1208         return -EINVAL;
1209 
1210     /* We can only differ with CSV[23], and anything else is an error */
1211     val ^= read_id_reg(vcpu, rd, false);
1212     val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1213          (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1214     if (val)
1215         return -EINVAL;
1216 
1217     vcpu->kvm->arch.pfr0_csv2 = csv2;
1218     vcpu->kvm->arch.pfr0_csv3 = csv3;
1219 
1220     return 0;
1221 }
1222 
1223 /*
1224  * cpufeature ID register user accessors
1225  *
1226  * For now, these registers are immutable for userspace, so no values
1227  * are stored, and for set_id_reg() we don't allow the effective value
1228  * to be changed.
1229  */
1230 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1231             const struct sys_reg_desc *rd, u64 *val,
1232             bool raz)
1233 {
1234     *val = read_id_reg(vcpu, rd, raz);
1235     return 0;
1236 }
1237 
1238 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1239             const struct sys_reg_desc *rd, u64 val,
1240             bool raz)
1241 {
1242     /* This is what we mean by invariant: you can't change it. */
1243     if (val != read_id_reg(vcpu, rd, raz))
1244         return -EINVAL;
1245 
1246     return 0;
1247 }
1248 
1249 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1250               u64 *val)
1251 {
1252     bool raz = sysreg_visible_as_raz(vcpu, rd);
1253 
1254     return __get_id_reg(vcpu, rd, val, raz);
1255 }
1256 
1257 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1258               u64 val)
1259 {
1260     bool raz = sysreg_visible_as_raz(vcpu, rd);
1261 
1262     return __set_id_reg(vcpu, rd, val, raz);
1263 }
1264 
1265 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1266               u64 val)
1267 {
1268     return __set_id_reg(vcpu, rd, val, true);
1269 }
1270 
1271 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1272                u64 *val)
1273 {
1274     *val = 0;
1275     return 0;
1276 }
1277 
1278 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1279               u64 val)
1280 {
1281     return 0;
1282 }
1283 
1284 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1285                const struct sys_reg_desc *r)
1286 {
1287     if (p->is_write)
1288         return write_to_read_only(vcpu, p, r);
1289 
1290     p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1291     return true;
1292 }
1293 
1294 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1295              const struct sys_reg_desc *r)
1296 {
1297     if (p->is_write)
1298         return write_to_read_only(vcpu, p, r);
1299 
1300     p->regval = read_sysreg(clidr_el1);
1301     return true;
1302 }
1303 
1304 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1305               const struct sys_reg_desc *r)
1306 {
1307     int reg = r->reg;
1308 
1309     if (p->is_write)
1310         vcpu_write_sys_reg(vcpu, p->regval, reg);
1311     else
1312         p->regval = vcpu_read_sys_reg(vcpu, reg);
1313     return true;
1314 }
1315 
1316 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1317               const struct sys_reg_desc *r)
1318 {
1319     u32 csselr;
1320 
1321     if (p->is_write)
1322         return write_to_read_only(vcpu, p, r);
1323 
1324     csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1325     p->regval = get_ccsidr(csselr);
1326 
1327     /*
1328      * Guests should not be doing cache operations by set/way at all, and
1329      * for this reason, we trap them and attempt to infer the intent, so
1330      * that we can flush the entire guest's address space at the appropriate
1331      * time.
1332      * To prevent this trapping from causing performance problems, let's
1333      * expose the geometry of all data and unified caches (which are
1334      * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1335      * [If guests should attempt to infer aliasing properties from the
1336      * geometry (which is not permitted by the architecture), they would
1337      * only do so for virtually indexed caches.]
1338      */
1339     if (!(csselr & 1)) // data or unified cache
1340         p->regval &= ~GENMASK(27, 3);
1341     return true;
1342 }
1343 
1344 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1345                    const struct sys_reg_desc *rd)
1346 {
1347     if (kvm_has_mte(vcpu->kvm))
1348         return 0;
1349 
1350     return REG_HIDDEN;
1351 }
1352 
1353 #define MTE_REG(name) {             \
1354     SYS_DESC(SYS_##name),           \
1355     .access = undef_access,         \
1356     .reset = reset_unknown,         \
1357     .reg = name,                \
1358     .visibility = mte_visibility,       \
1359 }
1360 
1361 /* sys_reg_desc initialiser for known cpufeature ID registers */
1362 #define ID_SANITISED(name) {            \
1363     SYS_DESC(SYS_##name),           \
1364     .access = access_id_reg,        \
1365     .get_user = get_id_reg,         \
1366     .set_user = set_id_reg,         \
1367     .visibility = id_visibility,        \
1368 }
1369 
1370 /*
1371  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1372  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1373  * (1 <= crm < 8, 0 <= Op2 < 8).
1374  */
1375 #define ID_UNALLOCATED(crm, op2) {          \
1376     Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1377     .access = access_raz_id_reg,            \
1378     .get_user = get_raz_reg,            \
1379     .set_user = set_raz_id_reg,         \
1380 }
1381 
1382 /*
1383  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1384  * For now, these are exposed just like unallocated ID regs: they appear
1385  * RAZ for the guest.
1386  */
1387 #define ID_HIDDEN(name) {           \
1388     SYS_DESC(SYS_##name),           \
1389     .access = access_raz_id_reg,        \
1390     .get_user = get_raz_reg,        \
1391     .set_user = set_raz_id_reg,     \
1392 }
1393 
1394 /*
1395  * Architected system registers.
1396  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1397  *
1398  * Debug handling: We do trap most, if not all debug related system
1399  * registers. The implementation is good enough to ensure that a guest
1400  * can use these with minimal performance degradation. The drawback is
1401  * that we don't implement any of the external debug architecture.
1402  * This should be revisited if we ever encounter a more demanding
1403  * guest...
1404  */
1405 static const struct sys_reg_desc sys_reg_descs[] = {
1406     { SYS_DESC(SYS_DC_ISW), access_dcsw },
1407     { SYS_DESC(SYS_DC_CSW), access_dcsw },
1408     { SYS_DESC(SYS_DC_CISW), access_dcsw },
1409 
1410     DBG_BCR_BVR_WCR_WVR_EL1(0),
1411     DBG_BCR_BVR_WCR_WVR_EL1(1),
1412     { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1413     { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1414     DBG_BCR_BVR_WCR_WVR_EL1(2),
1415     DBG_BCR_BVR_WCR_WVR_EL1(3),
1416     DBG_BCR_BVR_WCR_WVR_EL1(4),
1417     DBG_BCR_BVR_WCR_WVR_EL1(5),
1418     DBG_BCR_BVR_WCR_WVR_EL1(6),
1419     DBG_BCR_BVR_WCR_WVR_EL1(7),
1420     DBG_BCR_BVR_WCR_WVR_EL1(8),
1421     DBG_BCR_BVR_WCR_WVR_EL1(9),
1422     DBG_BCR_BVR_WCR_WVR_EL1(10),
1423     DBG_BCR_BVR_WCR_WVR_EL1(11),
1424     DBG_BCR_BVR_WCR_WVR_EL1(12),
1425     DBG_BCR_BVR_WCR_WVR_EL1(13),
1426     DBG_BCR_BVR_WCR_WVR_EL1(14),
1427     DBG_BCR_BVR_WCR_WVR_EL1(15),
1428 
1429     { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1430     { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1431     { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1432         SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1433     { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1434     { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1435     { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1436     { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1437     { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1438 
1439     { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1440     { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1441     // DBGDTR[TR]X_EL0 share the same encoding
1442     { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1443 
1444     { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1445 
1446     { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1447 
1448     /*
1449      * ID regs: all ID_SANITISED() entries here must have corresponding
1450      * entries in arm64_ftr_regs[].
1451      */
1452 
1453     /* AArch64 mappings of the AArch32 ID registers */
1454     /* CRm=1 */
1455     ID_SANITISED(ID_PFR0_EL1),
1456     ID_SANITISED(ID_PFR1_EL1),
1457     ID_SANITISED(ID_DFR0_EL1),
1458     ID_HIDDEN(ID_AFR0_EL1),
1459     ID_SANITISED(ID_MMFR0_EL1),
1460     ID_SANITISED(ID_MMFR1_EL1),
1461     ID_SANITISED(ID_MMFR2_EL1),
1462     ID_SANITISED(ID_MMFR3_EL1),
1463 
1464     /* CRm=2 */
1465     ID_SANITISED(ID_ISAR0_EL1),
1466     ID_SANITISED(ID_ISAR1_EL1),
1467     ID_SANITISED(ID_ISAR2_EL1),
1468     ID_SANITISED(ID_ISAR3_EL1),
1469     ID_SANITISED(ID_ISAR4_EL1),
1470     ID_SANITISED(ID_ISAR5_EL1),
1471     ID_SANITISED(ID_MMFR4_EL1),
1472     ID_SANITISED(ID_ISAR6_EL1),
1473 
1474     /* CRm=3 */
1475     ID_SANITISED(MVFR0_EL1),
1476     ID_SANITISED(MVFR1_EL1),
1477     ID_SANITISED(MVFR2_EL1),
1478     ID_UNALLOCATED(3,3),
1479     ID_SANITISED(ID_PFR2_EL1),
1480     ID_HIDDEN(ID_DFR1_EL1),
1481     ID_SANITISED(ID_MMFR5_EL1),
1482     ID_UNALLOCATED(3,7),
1483 
1484     /* AArch64 ID registers */
1485     /* CRm=4 */
1486     { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1487       .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1488     ID_SANITISED(ID_AA64PFR1_EL1),
1489     ID_UNALLOCATED(4,2),
1490     ID_UNALLOCATED(4,3),
1491     ID_SANITISED(ID_AA64ZFR0_EL1),
1492     ID_HIDDEN(ID_AA64SMFR0_EL1),
1493     ID_UNALLOCATED(4,6),
1494     ID_UNALLOCATED(4,7),
1495 
1496     /* CRm=5 */
1497     ID_SANITISED(ID_AA64DFR0_EL1),
1498     ID_SANITISED(ID_AA64DFR1_EL1),
1499     ID_UNALLOCATED(5,2),
1500     ID_UNALLOCATED(5,3),
1501     ID_HIDDEN(ID_AA64AFR0_EL1),
1502     ID_HIDDEN(ID_AA64AFR1_EL1),
1503     ID_UNALLOCATED(5,6),
1504     ID_UNALLOCATED(5,7),
1505 
1506     /* CRm=6 */
1507     ID_SANITISED(ID_AA64ISAR0_EL1),
1508     ID_SANITISED(ID_AA64ISAR1_EL1),
1509     ID_SANITISED(ID_AA64ISAR2_EL1),
1510     ID_UNALLOCATED(6,3),
1511     ID_UNALLOCATED(6,4),
1512     ID_UNALLOCATED(6,5),
1513     ID_UNALLOCATED(6,6),
1514     ID_UNALLOCATED(6,7),
1515 
1516     /* CRm=7 */
1517     ID_SANITISED(ID_AA64MMFR0_EL1),
1518     ID_SANITISED(ID_AA64MMFR1_EL1),
1519     ID_SANITISED(ID_AA64MMFR2_EL1),
1520     ID_UNALLOCATED(7,3),
1521     ID_UNALLOCATED(7,4),
1522     ID_UNALLOCATED(7,5),
1523     ID_UNALLOCATED(7,6),
1524     ID_UNALLOCATED(7,7),
1525 
1526     { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1527     { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1528     { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1529 
1530     MTE_REG(RGSR_EL1),
1531     MTE_REG(GCR_EL1),
1532 
1533     { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1534     { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1535     { SYS_DESC(SYS_SMPRI_EL1), undef_access },
1536     { SYS_DESC(SYS_SMCR_EL1), undef_access },
1537     { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1538     { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1539     { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1540 
1541     PTRAUTH_KEY(APIA),
1542     PTRAUTH_KEY(APIB),
1543     PTRAUTH_KEY(APDA),
1544     PTRAUTH_KEY(APDB),
1545     PTRAUTH_KEY(APGA),
1546 
1547     { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1548     { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1549     { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1550 
1551     { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1552     { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1553     { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1554     { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1555     { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1556     { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1557     { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1558     { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1559 
1560     MTE_REG(TFSR_EL1),
1561     MTE_REG(TFSRE0_EL1),
1562 
1563     { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1564     { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1565 
1566     { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1567     { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1568     { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1569     { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1570     { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1571     { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1572     { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1573     { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1574     { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1575     { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1576     { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1577     /* PMBIDR_EL1 is not trapped */
1578 
1579     { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1580       .access = access_pminten, .reg = PMINTENSET_EL1 },
1581     { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1582       .access = access_pminten, .reg = PMINTENSET_EL1 },
1583     { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1584 
1585     { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1586     { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1587 
1588     { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1589     { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1590     { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1591     { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1592     { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1593 
1594     { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1595     { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1596 
1597     { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1598     { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1599     { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1600     { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1601     { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1602     { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1603     { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1604     { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1605     { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1606     { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1607     { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1608     { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1609 
1610     { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1611     { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1612 
1613     { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1614 
1615     { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1616 
1617     { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1618     { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1619     { SYS_DESC(SYS_SMIDR_EL1), undef_access },
1620     { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1621     { SYS_DESC(SYS_CTR_EL0), access_ctr },
1622     { SYS_DESC(SYS_SVCR), undef_access },
1623 
1624     { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1625       .reset = reset_pmcr, .reg = PMCR_EL0 },
1626     { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1627       .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1628     { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1629       .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1630     { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1631       .access = access_pmovs, .reg = PMOVSSET_EL0 },
1632     /*
1633      * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1634      * previously (and pointlessly) advertised in the past...
1635      */
1636     { PMU_SYS_REG(SYS_PMSWINC_EL0),
1637       .get_user = get_raz_reg, .set_user = set_wi_reg,
1638       .access = access_pmswinc, .reset = NULL },
1639     { PMU_SYS_REG(SYS_PMSELR_EL0),
1640       .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1641     { PMU_SYS_REG(SYS_PMCEID0_EL0),
1642       .access = access_pmceid, .reset = NULL },
1643     { PMU_SYS_REG(SYS_PMCEID1_EL0),
1644       .access = access_pmceid, .reset = NULL },
1645     { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1646       .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1647     { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1648       .access = access_pmu_evtyper, .reset = NULL },
1649     { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1650       .access = access_pmu_evcntr, .reset = NULL },
1651     /*
1652      * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1653      * in 32bit mode. Here we choose to reset it as zero for consistency.
1654      */
1655     { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1656       .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1657     { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1658       .access = access_pmovs, .reg = PMOVSSET_EL0 },
1659 
1660     { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1661     { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1662     { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
1663 
1664     { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1665 
1666     { SYS_DESC(SYS_AMCR_EL0), undef_access },
1667     { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1668     { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1669     { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1670     { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1671     { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1672     { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1673     { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1674     AMU_AMEVCNTR0_EL0(0),
1675     AMU_AMEVCNTR0_EL0(1),
1676     AMU_AMEVCNTR0_EL0(2),
1677     AMU_AMEVCNTR0_EL0(3),
1678     AMU_AMEVCNTR0_EL0(4),
1679     AMU_AMEVCNTR0_EL0(5),
1680     AMU_AMEVCNTR0_EL0(6),
1681     AMU_AMEVCNTR0_EL0(7),
1682     AMU_AMEVCNTR0_EL0(8),
1683     AMU_AMEVCNTR0_EL0(9),
1684     AMU_AMEVCNTR0_EL0(10),
1685     AMU_AMEVCNTR0_EL0(11),
1686     AMU_AMEVCNTR0_EL0(12),
1687     AMU_AMEVCNTR0_EL0(13),
1688     AMU_AMEVCNTR0_EL0(14),
1689     AMU_AMEVCNTR0_EL0(15),
1690     AMU_AMEVTYPER0_EL0(0),
1691     AMU_AMEVTYPER0_EL0(1),
1692     AMU_AMEVTYPER0_EL0(2),
1693     AMU_AMEVTYPER0_EL0(3),
1694     AMU_AMEVTYPER0_EL0(4),
1695     AMU_AMEVTYPER0_EL0(5),
1696     AMU_AMEVTYPER0_EL0(6),
1697     AMU_AMEVTYPER0_EL0(7),
1698     AMU_AMEVTYPER0_EL0(8),
1699     AMU_AMEVTYPER0_EL0(9),
1700     AMU_AMEVTYPER0_EL0(10),
1701     AMU_AMEVTYPER0_EL0(11),
1702     AMU_AMEVTYPER0_EL0(12),
1703     AMU_AMEVTYPER0_EL0(13),
1704     AMU_AMEVTYPER0_EL0(14),
1705     AMU_AMEVTYPER0_EL0(15),
1706     AMU_AMEVCNTR1_EL0(0),
1707     AMU_AMEVCNTR1_EL0(1),
1708     AMU_AMEVCNTR1_EL0(2),
1709     AMU_AMEVCNTR1_EL0(3),
1710     AMU_AMEVCNTR1_EL0(4),
1711     AMU_AMEVCNTR1_EL0(5),
1712     AMU_AMEVCNTR1_EL0(6),
1713     AMU_AMEVCNTR1_EL0(7),
1714     AMU_AMEVCNTR1_EL0(8),
1715     AMU_AMEVCNTR1_EL0(9),
1716     AMU_AMEVCNTR1_EL0(10),
1717     AMU_AMEVCNTR1_EL0(11),
1718     AMU_AMEVCNTR1_EL0(12),
1719     AMU_AMEVCNTR1_EL0(13),
1720     AMU_AMEVCNTR1_EL0(14),
1721     AMU_AMEVCNTR1_EL0(15),
1722     AMU_AMEVTYPER1_EL0(0),
1723     AMU_AMEVTYPER1_EL0(1),
1724     AMU_AMEVTYPER1_EL0(2),
1725     AMU_AMEVTYPER1_EL0(3),
1726     AMU_AMEVTYPER1_EL0(4),
1727     AMU_AMEVTYPER1_EL0(5),
1728     AMU_AMEVTYPER1_EL0(6),
1729     AMU_AMEVTYPER1_EL0(7),
1730     AMU_AMEVTYPER1_EL0(8),
1731     AMU_AMEVTYPER1_EL0(9),
1732     AMU_AMEVTYPER1_EL0(10),
1733     AMU_AMEVTYPER1_EL0(11),
1734     AMU_AMEVTYPER1_EL0(12),
1735     AMU_AMEVTYPER1_EL0(13),
1736     AMU_AMEVTYPER1_EL0(14),
1737     AMU_AMEVTYPER1_EL0(15),
1738 
1739     { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1740     { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1741     { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1742 
1743     /* PMEVCNTRn_EL0 */
1744     PMU_PMEVCNTR_EL0(0),
1745     PMU_PMEVCNTR_EL0(1),
1746     PMU_PMEVCNTR_EL0(2),
1747     PMU_PMEVCNTR_EL0(3),
1748     PMU_PMEVCNTR_EL0(4),
1749     PMU_PMEVCNTR_EL0(5),
1750     PMU_PMEVCNTR_EL0(6),
1751     PMU_PMEVCNTR_EL0(7),
1752     PMU_PMEVCNTR_EL0(8),
1753     PMU_PMEVCNTR_EL0(9),
1754     PMU_PMEVCNTR_EL0(10),
1755     PMU_PMEVCNTR_EL0(11),
1756     PMU_PMEVCNTR_EL0(12),
1757     PMU_PMEVCNTR_EL0(13),
1758     PMU_PMEVCNTR_EL0(14),
1759     PMU_PMEVCNTR_EL0(15),
1760     PMU_PMEVCNTR_EL0(16),
1761     PMU_PMEVCNTR_EL0(17),
1762     PMU_PMEVCNTR_EL0(18),
1763     PMU_PMEVCNTR_EL0(19),
1764     PMU_PMEVCNTR_EL0(20),
1765     PMU_PMEVCNTR_EL0(21),
1766     PMU_PMEVCNTR_EL0(22),
1767     PMU_PMEVCNTR_EL0(23),
1768     PMU_PMEVCNTR_EL0(24),
1769     PMU_PMEVCNTR_EL0(25),
1770     PMU_PMEVCNTR_EL0(26),
1771     PMU_PMEVCNTR_EL0(27),
1772     PMU_PMEVCNTR_EL0(28),
1773     PMU_PMEVCNTR_EL0(29),
1774     PMU_PMEVCNTR_EL0(30),
1775     /* PMEVTYPERn_EL0 */
1776     PMU_PMEVTYPER_EL0(0),
1777     PMU_PMEVTYPER_EL0(1),
1778     PMU_PMEVTYPER_EL0(2),
1779     PMU_PMEVTYPER_EL0(3),
1780     PMU_PMEVTYPER_EL0(4),
1781     PMU_PMEVTYPER_EL0(5),
1782     PMU_PMEVTYPER_EL0(6),
1783     PMU_PMEVTYPER_EL0(7),
1784     PMU_PMEVTYPER_EL0(8),
1785     PMU_PMEVTYPER_EL0(9),
1786     PMU_PMEVTYPER_EL0(10),
1787     PMU_PMEVTYPER_EL0(11),
1788     PMU_PMEVTYPER_EL0(12),
1789     PMU_PMEVTYPER_EL0(13),
1790     PMU_PMEVTYPER_EL0(14),
1791     PMU_PMEVTYPER_EL0(15),
1792     PMU_PMEVTYPER_EL0(16),
1793     PMU_PMEVTYPER_EL0(17),
1794     PMU_PMEVTYPER_EL0(18),
1795     PMU_PMEVTYPER_EL0(19),
1796     PMU_PMEVTYPER_EL0(20),
1797     PMU_PMEVTYPER_EL0(21),
1798     PMU_PMEVTYPER_EL0(22),
1799     PMU_PMEVTYPER_EL0(23),
1800     PMU_PMEVTYPER_EL0(24),
1801     PMU_PMEVTYPER_EL0(25),
1802     PMU_PMEVTYPER_EL0(26),
1803     PMU_PMEVTYPER_EL0(27),
1804     PMU_PMEVTYPER_EL0(28),
1805     PMU_PMEVTYPER_EL0(29),
1806     PMU_PMEVTYPER_EL0(30),
1807     /*
1808      * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1809      * in 32bit mode. Here we choose to reset it as zero for consistency.
1810      */
1811     { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1812       .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1813 
1814     { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1815     { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1816     { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1817 };
1818 
1819 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1820             struct sys_reg_params *p,
1821             const struct sys_reg_desc *r)
1822 {
1823     if (p->is_write) {
1824         return ignore_write(vcpu, p);
1825     } else {
1826         u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1827         u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1828         u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1829 
1830         p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1831                  (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1832                  (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1833                  | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1834         return true;
1835     }
1836 }
1837 
1838 /*
1839  * AArch32 debug register mappings
1840  *
1841  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1842  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1843  *
1844  * None of the other registers share their location, so treat them as
1845  * if they were 64bit.
1846  */
1847 #define DBG_BCR_BVR_WCR_WVR(n)                            \
1848     /* DBGBVRn */                                 \
1849     { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1850     /* DBGBCRn */                                 \
1851     { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },       \
1852     /* DBGWVRn */                                 \
1853     { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },       \
1854     /* DBGWCRn */                                 \
1855     { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1856 
1857 #define DBGBXVR(n)                                \
1858     { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1859 
1860 /*
1861  * Trapped cp14 registers. We generally ignore most of the external
1862  * debug, on the principle that they don't really make sense to a
1863  * guest. Revisit this one day, would this principle change.
1864  */
1865 static const struct sys_reg_desc cp14_regs[] = {
1866     /* DBGDIDR */
1867     { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1868     /* DBGDTRRXext */
1869     { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1870 
1871     DBG_BCR_BVR_WCR_WVR(0),
1872     /* DBGDSCRint */
1873     { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1874     DBG_BCR_BVR_WCR_WVR(1),
1875     /* DBGDCCINT */
1876     { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1877     /* DBGDSCRext */
1878     { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1879     DBG_BCR_BVR_WCR_WVR(2),
1880     /* DBGDTR[RT]Xint */
1881     { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1882     /* DBGDTR[RT]Xext */
1883     { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1884     DBG_BCR_BVR_WCR_WVR(3),
1885     DBG_BCR_BVR_WCR_WVR(4),
1886     DBG_BCR_BVR_WCR_WVR(5),
1887     /* DBGWFAR */
1888     { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1889     /* DBGOSECCR */
1890     { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1891     DBG_BCR_BVR_WCR_WVR(6),
1892     /* DBGVCR */
1893     { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1894     DBG_BCR_BVR_WCR_WVR(7),
1895     DBG_BCR_BVR_WCR_WVR(8),
1896     DBG_BCR_BVR_WCR_WVR(9),
1897     DBG_BCR_BVR_WCR_WVR(10),
1898     DBG_BCR_BVR_WCR_WVR(11),
1899     DBG_BCR_BVR_WCR_WVR(12),
1900     DBG_BCR_BVR_WCR_WVR(13),
1901     DBG_BCR_BVR_WCR_WVR(14),
1902     DBG_BCR_BVR_WCR_WVR(15),
1903 
1904     /* DBGDRAR (32bit) */
1905     { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1906 
1907     DBGBXVR(0),
1908     /* DBGOSLAR */
1909     { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
1910     DBGBXVR(1),
1911     /* DBGOSLSR */
1912     { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
1913     DBGBXVR(2),
1914     DBGBXVR(3),
1915     /* DBGOSDLR */
1916     { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1917     DBGBXVR(4),
1918     /* DBGPRCR */
1919     { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1920     DBGBXVR(5),
1921     DBGBXVR(6),
1922     DBGBXVR(7),
1923     DBGBXVR(8),
1924     DBGBXVR(9),
1925     DBGBXVR(10),
1926     DBGBXVR(11),
1927     DBGBXVR(12),
1928     DBGBXVR(13),
1929     DBGBXVR(14),
1930     DBGBXVR(15),
1931 
1932     /* DBGDSAR (32bit) */
1933     { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1934 
1935     /* DBGDEVID2 */
1936     { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1937     /* DBGDEVID1 */
1938     { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1939     /* DBGDEVID */
1940     { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1941     /* DBGCLAIMSET */
1942     { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1943     /* DBGCLAIMCLR */
1944     { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1945     /* DBGAUTHSTATUS */
1946     { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1947 };
1948 
1949 /* Trapped cp14 64bit registers */
1950 static const struct sys_reg_desc cp14_64_regs[] = {
1951     /* DBGDRAR (64bit) */
1952     { Op1( 0), CRm( 1), .access = trap_raz_wi },
1953 
1954     /* DBGDSAR (64bit) */
1955     { Op1( 0), CRm( 2), .access = trap_raz_wi },
1956 };
1957 
1958 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)          \
1959     AA32(_map),                         \
1960     Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),         \
1961     .visibility = pmu_visibility
1962 
1963 /* Macro to expand the PMEVCNTRn register */
1964 #define PMU_PMEVCNTR(n)                         \
1965     { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,               \
1966       (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),          \
1967       .access = access_pmu_evcntr }
1968 
1969 /* Macro to expand the PMEVTYPERn register */
1970 #define PMU_PMEVTYPER(n)                        \
1971     { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,               \
1972       (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),          \
1973       .access = access_pmu_evtyper }
1974 /*
1975  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1976  * depending on the way they are accessed (as a 32bit or a 64bit
1977  * register).
1978  */
1979 static const struct sys_reg_desc cp15_regs[] = {
1980     { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1981     { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1982     /* ACTLR */
1983     { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1984     /* ACTLR2 */
1985     { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1986     { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1987     { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1988     /* TTBCR */
1989     { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1990     /* TTBCR2 */
1991     { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1992     { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1993     /* DFSR */
1994     { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1995     { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1996     /* ADFSR */
1997     { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1998     /* AIFSR */
1999     { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2000     /* DFAR */
2001     { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2002     /* IFAR */
2003     { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2004 
2005     /*
2006      * DC{C,I,CI}SW operations:
2007      */
2008     { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2009     { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2010     { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2011 
2012     /* PMU */
2013     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2014     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2015     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2016     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2017     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2018     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2019     { CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2020     { CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2021     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2022     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2023     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2024     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2025     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2026     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2027     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2028     { CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2029     { CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2030     /* PMMIR */
2031     { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2032 
2033     /* PRRR/MAIR0 */
2034     { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2035     /* NMRR/MAIR1 */
2036     { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2037     /* AMAIR0 */
2038     { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2039     /* AMAIR1 */
2040     { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2041 
2042     /* ICC_SRE */
2043     { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2044 
2045     { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2046 
2047     /* Arch Tmers */
2048     { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2049     { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2050 
2051     /* PMEVCNTRn */
2052     PMU_PMEVCNTR(0),
2053     PMU_PMEVCNTR(1),
2054     PMU_PMEVCNTR(2),
2055     PMU_PMEVCNTR(3),
2056     PMU_PMEVCNTR(4),
2057     PMU_PMEVCNTR(5),
2058     PMU_PMEVCNTR(6),
2059     PMU_PMEVCNTR(7),
2060     PMU_PMEVCNTR(8),
2061     PMU_PMEVCNTR(9),
2062     PMU_PMEVCNTR(10),
2063     PMU_PMEVCNTR(11),
2064     PMU_PMEVCNTR(12),
2065     PMU_PMEVCNTR(13),
2066     PMU_PMEVCNTR(14),
2067     PMU_PMEVCNTR(15),
2068     PMU_PMEVCNTR(16),
2069     PMU_PMEVCNTR(17),
2070     PMU_PMEVCNTR(18),
2071     PMU_PMEVCNTR(19),
2072     PMU_PMEVCNTR(20),
2073     PMU_PMEVCNTR(21),
2074     PMU_PMEVCNTR(22),
2075     PMU_PMEVCNTR(23),
2076     PMU_PMEVCNTR(24),
2077     PMU_PMEVCNTR(25),
2078     PMU_PMEVCNTR(26),
2079     PMU_PMEVCNTR(27),
2080     PMU_PMEVCNTR(28),
2081     PMU_PMEVCNTR(29),
2082     PMU_PMEVCNTR(30),
2083     /* PMEVTYPERn */
2084     PMU_PMEVTYPER(0),
2085     PMU_PMEVTYPER(1),
2086     PMU_PMEVTYPER(2),
2087     PMU_PMEVTYPER(3),
2088     PMU_PMEVTYPER(4),
2089     PMU_PMEVTYPER(5),
2090     PMU_PMEVTYPER(6),
2091     PMU_PMEVTYPER(7),
2092     PMU_PMEVTYPER(8),
2093     PMU_PMEVTYPER(9),
2094     PMU_PMEVTYPER(10),
2095     PMU_PMEVTYPER(11),
2096     PMU_PMEVTYPER(12),
2097     PMU_PMEVTYPER(13),
2098     PMU_PMEVTYPER(14),
2099     PMU_PMEVTYPER(15),
2100     PMU_PMEVTYPER(16),
2101     PMU_PMEVTYPER(17),
2102     PMU_PMEVTYPER(18),
2103     PMU_PMEVTYPER(19),
2104     PMU_PMEVTYPER(20),
2105     PMU_PMEVTYPER(21),
2106     PMU_PMEVTYPER(22),
2107     PMU_PMEVTYPER(23),
2108     PMU_PMEVTYPER(24),
2109     PMU_PMEVTYPER(25),
2110     PMU_PMEVTYPER(26),
2111     PMU_PMEVTYPER(27),
2112     PMU_PMEVTYPER(28),
2113     PMU_PMEVTYPER(29),
2114     PMU_PMEVTYPER(30),
2115     /* PMCCFILTR */
2116     { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2117 
2118     { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2119     { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2120     { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2121 };
2122 
2123 static const struct sys_reg_desc cp15_64_regs[] = {
2124     { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2125     { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2126     { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2127     { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2128     { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2129     { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2130     { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2131 };
2132 
2133 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2134                    bool is_32)
2135 {
2136     unsigned int i;
2137 
2138     for (i = 0; i < n; i++) {
2139         if (!is_32 && table[i].reg && !table[i].reset) {
2140             kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2141             return false;
2142         }
2143 
2144         if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2145             kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2146             return false;
2147         }
2148     }
2149 
2150     return true;
2151 }
2152 
2153 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2154 {
2155     kvm_inject_undefined(vcpu);
2156     return 1;
2157 }
2158 
2159 static void perform_access(struct kvm_vcpu *vcpu,
2160                struct sys_reg_params *params,
2161                const struct sys_reg_desc *r)
2162 {
2163     trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2164 
2165     /* Check for regs disabled by runtime config */
2166     if (sysreg_hidden(vcpu, r)) {
2167         kvm_inject_undefined(vcpu);
2168         return;
2169     }
2170 
2171     /*
2172      * Not having an accessor means that we have configured a trap
2173      * that we don't know how to handle. This certainly qualifies
2174      * as a gross bug that should be fixed right away.
2175      */
2176     BUG_ON(!r->access);
2177 
2178     /* Skip instruction if instructed so */
2179     if (likely(r->access(vcpu, params, r)))
2180         kvm_incr_pc(vcpu);
2181 }
2182 
2183 /*
2184  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2185  *                call the corresponding trap handler.
2186  *
2187  * @params: pointer to the descriptor of the access
2188  * @table: array of trap descriptors
2189  * @num: size of the trap descriptor array
2190  *
2191  * Return true if the access has been handled, false if not.
2192  */
2193 static bool emulate_cp(struct kvm_vcpu *vcpu,
2194                struct sys_reg_params *params,
2195                const struct sys_reg_desc *table,
2196                size_t num)
2197 {
2198     const struct sys_reg_desc *r;
2199 
2200     if (!table)
2201         return false;   /* Not handled */
2202 
2203     r = find_reg(params, table, num);
2204 
2205     if (r) {
2206         perform_access(vcpu, params, r);
2207         return true;
2208     }
2209 
2210     /* Not handled */
2211     return false;
2212 }
2213 
2214 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2215                 struct sys_reg_params *params)
2216 {
2217     u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2218     int cp = -1;
2219 
2220     switch (esr_ec) {
2221     case ESR_ELx_EC_CP15_32:
2222     case ESR_ELx_EC_CP15_64:
2223         cp = 15;
2224         break;
2225     case ESR_ELx_EC_CP14_MR:
2226     case ESR_ELx_EC_CP14_64:
2227         cp = 14;
2228         break;
2229     default:
2230         WARN_ON(1);
2231     }
2232 
2233     print_sys_reg_msg(params,
2234               "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2235               cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2236     kvm_inject_undefined(vcpu);
2237 }
2238 
2239 /**
2240  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2241  * @vcpu: The VCPU pointer
2242  * @run:  The kvm_run struct
2243  */
2244 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2245                 const struct sys_reg_desc *global,
2246                 size_t nr_global)
2247 {
2248     struct sys_reg_params params;
2249     u64 esr = kvm_vcpu_get_esr(vcpu);
2250     int Rt = kvm_vcpu_sys_get_rt(vcpu);
2251     int Rt2 = (esr >> 10) & 0x1f;
2252 
2253     params.CRm = (esr >> 1) & 0xf;
2254     params.is_write = ((esr & 1) == 0);
2255 
2256     params.Op0 = 0;
2257     params.Op1 = (esr >> 16) & 0xf;
2258     params.Op2 = 0;
2259     params.CRn = 0;
2260 
2261     /*
2262      * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2263      * backends between AArch32 and AArch64, we get away with it.
2264      */
2265     if (params.is_write) {
2266         params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2267         params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2268     }
2269 
2270     /*
2271      * If the table contains a handler, handle the
2272      * potential register operation in the case of a read and return
2273      * with success.
2274      */
2275     if (emulate_cp(vcpu, &params, global, nr_global)) {
2276         /* Split up the value between registers for the read side */
2277         if (!params.is_write) {
2278             vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2279             vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2280         }
2281 
2282         return 1;
2283     }
2284 
2285     unhandled_cp_access(vcpu, &params);
2286     return 1;
2287 }
2288 
2289 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2290 
2291 /*
2292  * The CP10 ID registers are architecturally mapped to AArch64 feature
2293  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2294  * from AArch32.
2295  */
2296 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2297 {
2298     u8 reg_id = (esr >> 10) & 0xf;
2299     bool valid;
2300 
2301     params->is_write = ((esr & 1) == 0);
2302     params->Op0 = 3;
2303     params->Op1 = 0;
2304     params->CRn = 0;
2305     params->CRm = 3;
2306 
2307     /* CP10 ID registers are read-only */
2308     valid = !params->is_write;
2309 
2310     switch (reg_id) {
2311     /* MVFR0 */
2312     case 0b0111:
2313         params->Op2 = 0;
2314         break;
2315     /* MVFR1 */
2316     case 0b0110:
2317         params->Op2 = 1;
2318         break;
2319     /* MVFR2 */
2320     case 0b0101:
2321         params->Op2 = 2;
2322         break;
2323     default:
2324         valid = false;
2325     }
2326 
2327     if (valid)
2328         return true;
2329 
2330     kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2331               params->is_write ? "write" : "read", reg_id);
2332     return false;
2333 }
2334 
2335 /**
2336  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2337  *            VFP Register' from AArch32.
2338  * @vcpu: The vCPU pointer
2339  *
2340  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2341  * Work out the correct AArch64 system register encoding and reroute to the
2342  * AArch64 system register emulation.
2343  */
2344 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2345 {
2346     int Rt = kvm_vcpu_sys_get_rt(vcpu);
2347     u64 esr = kvm_vcpu_get_esr(vcpu);
2348     struct sys_reg_params params;
2349 
2350     /* UNDEF on any unhandled register access */
2351     if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2352         kvm_inject_undefined(vcpu);
2353         return 1;
2354     }
2355 
2356     if (emulate_sys_reg(vcpu, &params))
2357         vcpu_set_reg(vcpu, Rt, params.regval);
2358 
2359     return 1;
2360 }
2361 
2362 /**
2363  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2364  *                 CRn=0, which corresponds to the AArch32 feature
2365  *                 registers.
2366  * @vcpu: the vCPU pointer
2367  * @params: the system register access parameters.
2368  *
2369  * Our cp15 system register tables do not enumerate the AArch32 feature
2370  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2371  * register encoding can be trivially remapped into the AArch64 for the feature
2372  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2373  *
2374  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2375  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2376  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2377  * treat undefined registers in this range as RAZ.
2378  */
2379 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2380                    struct sys_reg_params *params)
2381 {
2382     int Rt = kvm_vcpu_sys_get_rt(vcpu);
2383 
2384     /* Treat impossible writes to RO registers as UNDEFINED */
2385     if (params->is_write) {
2386         unhandled_cp_access(vcpu, params);
2387         return 1;
2388     }
2389 
2390     params->Op0 = 3;
2391 
2392     /*
2393      * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
2394      * Avoid conflicting with future expansion of AArch64 feature registers
2395      * and simply treat them as RAZ here.
2396      */
2397     if (params->CRm > 3)
2398         params->regval = 0;
2399     else if (!emulate_sys_reg(vcpu, params))
2400         return 1;
2401 
2402     vcpu_set_reg(vcpu, Rt, params->regval);
2403     return 1;
2404 }
2405 
2406 /**
2407  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2408  * @vcpu: The VCPU pointer
2409  * @run:  The kvm_run struct
2410  */
2411 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2412                 struct sys_reg_params *params,
2413                 const struct sys_reg_desc *global,
2414                 size_t nr_global)
2415 {
2416     int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2417 
2418     params->regval = vcpu_get_reg(vcpu, Rt);
2419 
2420     if (emulate_cp(vcpu, params, global, nr_global)) {
2421         if (!params->is_write)
2422             vcpu_set_reg(vcpu, Rt, params->regval);
2423         return 1;
2424     }
2425 
2426     unhandled_cp_access(vcpu, params);
2427     return 1;
2428 }
2429 
2430 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2431 {
2432     return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2433 }
2434 
2435 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2436 {
2437     struct sys_reg_params params;
2438 
2439     params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2440 
2441     /*
2442      * Certain AArch32 ID registers are handled by rerouting to the AArch64
2443      * system register table. Registers in the ID range where CRm=0 are
2444      * excluded from this scheme as they do not trivially map into AArch64
2445      * system register encodings.
2446      */
2447     if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
2448         return kvm_emulate_cp15_id_reg(vcpu, &params);
2449 
2450     return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
2451 }
2452 
2453 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2454 {
2455     return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2456 }
2457 
2458 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2459 {
2460     struct sys_reg_params params;
2461 
2462     params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2463 
2464     return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
2465 }
2466 
2467 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2468 {
2469     // See ARM DDI 0487E.a, section D12.3.2
2470     return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2471 }
2472 
2473 /**
2474  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
2475  * @vcpu: The VCPU pointer
2476  * @params: Decoded system register parameters
2477  *
2478  * Return: true if the system register access was successful, false otherwise.
2479  */
2480 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
2481                struct sys_reg_params *params)
2482 {
2483     const struct sys_reg_desc *r;
2484 
2485     r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2486 
2487     if (likely(r)) {
2488         perform_access(vcpu, params, r);
2489         return true;
2490     }
2491 
2492     if (is_imp_def_sys_reg(params)) {
2493         kvm_inject_undefined(vcpu);
2494     } else {
2495         print_sys_reg_msg(params,
2496                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2497                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2498         kvm_inject_undefined(vcpu);
2499     }
2500     return false;
2501 }
2502 
2503 /**
2504  * kvm_reset_sys_regs - sets system registers to reset value
2505  * @vcpu: The VCPU pointer
2506  *
2507  * This function finds the right table above and sets the registers on the
2508  * virtual CPU struct to their architecturally defined reset values.
2509  */
2510 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2511 {
2512     unsigned long i;
2513 
2514     for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2515         if (sys_reg_descs[i].reset)
2516             sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2517 }
2518 
2519 /**
2520  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2521  * @vcpu: The VCPU pointer
2522  */
2523 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2524 {
2525     struct sys_reg_params params;
2526     unsigned long esr = kvm_vcpu_get_esr(vcpu);
2527     int Rt = kvm_vcpu_sys_get_rt(vcpu);
2528 
2529     trace_kvm_handle_sys_reg(esr);
2530 
2531     params = esr_sys64_to_params(esr);
2532     params.regval = vcpu_get_reg(vcpu, Rt);
2533 
2534     if (!emulate_sys_reg(vcpu, &params))
2535         return 1;
2536 
2537     if (!params.is_write)
2538         vcpu_set_reg(vcpu, Rt, params.regval);
2539     return 1;
2540 }
2541 
2542 /******************************************************************************
2543  * Userspace API
2544  *****************************************************************************/
2545 
2546 static bool index_to_params(u64 id, struct sys_reg_params *params)
2547 {
2548     switch (id & KVM_REG_SIZE_MASK) {
2549     case KVM_REG_SIZE_U64:
2550         /* Any unused index bits means it's not valid. */
2551         if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2552                   | KVM_REG_ARM_COPROC_MASK
2553                   | KVM_REG_ARM64_SYSREG_OP0_MASK
2554                   | KVM_REG_ARM64_SYSREG_OP1_MASK
2555                   | KVM_REG_ARM64_SYSREG_CRN_MASK
2556                   | KVM_REG_ARM64_SYSREG_CRM_MASK
2557                   | KVM_REG_ARM64_SYSREG_OP2_MASK))
2558             return false;
2559         params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2560                    >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2561         params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2562                    >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2563         params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2564                    >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2565         params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2566                    >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2567         params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2568                    >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2569         return true;
2570     default:
2571         return false;
2572     }
2573 }
2574 
2575 const struct sys_reg_desc *get_reg_by_id(u64 id,
2576                      const struct sys_reg_desc table[],
2577                      unsigned int num)
2578 {
2579     struct sys_reg_params params;
2580 
2581     if (!index_to_params(id, &params))
2582         return NULL;
2583 
2584     return find_reg(&params, table, num);
2585 }
2586 
2587 /* Decode an index value, and find the sys_reg_desc entry. */
2588 static const struct sys_reg_desc *
2589 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
2590            const struct sys_reg_desc table[], unsigned int num)
2591 
2592 {
2593     const struct sys_reg_desc *r;
2594 
2595     /* We only do sys_reg for now. */
2596     if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2597         return NULL;
2598 
2599     r = get_reg_by_id(id, table, num);
2600 
2601     /* Not saved in the sys_reg array and not otherwise accessible? */
2602     if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
2603         r = NULL;
2604 
2605     return r;
2606 }
2607 
2608 /*
2609  * These are the invariant sys_reg registers: we let the guest see the
2610  * host versions of these, so they're part of the guest state.
2611  *
2612  * A future CPU may provide a mechanism to present different values to
2613  * the guest, or a future kvm may trap them.
2614  */
2615 
2616 #define FUNCTION_INVARIANT(reg)                     \
2617     static void get_##reg(struct kvm_vcpu *v,           \
2618                   const struct sys_reg_desc *r)     \
2619     {                               \
2620         ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2621     }
2622 
2623 FUNCTION_INVARIANT(midr_el1)
2624 FUNCTION_INVARIANT(revidr_el1)
2625 FUNCTION_INVARIANT(clidr_el1)
2626 FUNCTION_INVARIANT(aidr_el1)
2627 
2628 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2629 {
2630     ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2631 }
2632 
2633 /* ->val is filled in by kvm_sys_reg_table_init() */
2634 static struct sys_reg_desc invariant_sys_regs[] = {
2635     { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2636     { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2637     { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2638     { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2639     { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2640 };
2641 
2642 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
2643 {
2644     const struct sys_reg_desc *r;
2645 
2646     r = get_reg_by_id(id, invariant_sys_regs,
2647               ARRAY_SIZE(invariant_sys_regs));
2648     if (!r)
2649         return -ENOENT;
2650 
2651     return put_user(r->val, uaddr);
2652 }
2653 
2654 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
2655 {
2656     const struct sys_reg_desc *r;
2657     u64 val;
2658 
2659     r = get_reg_by_id(id, invariant_sys_regs,
2660               ARRAY_SIZE(invariant_sys_regs));
2661     if (!r)
2662         return -ENOENT;
2663 
2664     if (get_user(val, uaddr))
2665         return -EFAULT;
2666 
2667     /* This is what we mean by invariant: you can't change it. */
2668     if (r->val != val)
2669         return -EINVAL;
2670 
2671     return 0;
2672 }
2673 
2674 static bool is_valid_cache(u32 val)
2675 {
2676     u32 level, ctype;
2677 
2678     if (val >= CSSELR_MAX)
2679         return false;
2680 
2681     /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2682     level = (val >> 1);
2683     ctype = (cache_levels >> (level * 3)) & 7;
2684 
2685     switch (ctype) {
2686     case 0: /* No cache */
2687         return false;
2688     case 1: /* Instruction cache only */
2689         return (val & 1);
2690     case 2: /* Data cache only */
2691     case 4: /* Unified cache */
2692         return !(val & 1);
2693     case 3: /* Separate instruction and data caches */
2694         return true;
2695     default: /* Reserved: we can't know instruction or data. */
2696         return false;
2697     }
2698 }
2699 
2700 static int demux_c15_get(u64 id, void __user *uaddr)
2701 {
2702     u32 val;
2703     u32 __user *uval = uaddr;
2704 
2705     /* Fail if we have unknown bits set. */
2706     if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2707            | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2708         return -ENOENT;
2709 
2710     switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2711     case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2712         if (KVM_REG_SIZE(id) != 4)
2713             return -ENOENT;
2714         val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2715             >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2716         if (!is_valid_cache(val))
2717             return -ENOENT;
2718 
2719         return put_user(get_ccsidr(val), uval);
2720     default:
2721         return -ENOENT;
2722     }
2723 }
2724 
2725 static int demux_c15_set(u64 id, void __user *uaddr)
2726 {
2727     u32 val, newval;
2728     u32 __user *uval = uaddr;
2729 
2730     /* Fail if we have unknown bits set. */
2731     if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2732            | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2733         return -ENOENT;
2734 
2735     switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2736     case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2737         if (KVM_REG_SIZE(id) != 4)
2738             return -ENOENT;
2739         val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2740             >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2741         if (!is_valid_cache(val))
2742             return -ENOENT;
2743 
2744         if (get_user(newval, uval))
2745             return -EFAULT;
2746 
2747         /* This is also invariant: you can't change it. */
2748         if (newval != get_ccsidr(val))
2749             return -EINVAL;
2750         return 0;
2751     default:
2752         return -ENOENT;
2753     }
2754 }
2755 
2756 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
2757              const struct sys_reg_desc table[], unsigned int num)
2758 {
2759     u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
2760     const struct sys_reg_desc *r;
2761     u64 val;
2762     int ret;
2763 
2764     r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
2765     if (!r)
2766         return -ENOENT;
2767 
2768     if (r->get_user) {
2769         ret = (r->get_user)(vcpu, r, &val);
2770     } else {
2771         val = __vcpu_sys_reg(vcpu, r->reg);
2772         ret = 0;
2773     }
2774 
2775     if (!ret)
2776         ret = put_user(val, uaddr);
2777 
2778     return ret;
2779 }
2780 
2781 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2782 {
2783     void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2784     int err;
2785 
2786     if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2787         return demux_c15_get(reg->id, uaddr);
2788 
2789     err = get_invariant_sys_reg(reg->id, uaddr);
2790     if (err != -ENOENT)
2791         return err;
2792 
2793     return kvm_sys_reg_get_user(vcpu, reg,
2794                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2795 }
2796 
2797 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
2798              const struct sys_reg_desc table[], unsigned int num)
2799 {
2800     u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
2801     const struct sys_reg_desc *r;
2802     u64 val;
2803     int ret;
2804 
2805     if (get_user(val, uaddr))
2806         return -EFAULT;
2807 
2808     r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
2809     if (!r)
2810         return -ENOENT;
2811 
2812     if (r->set_user) {
2813         ret = (r->set_user)(vcpu, r, val);
2814     } else {
2815         __vcpu_sys_reg(vcpu, r->reg) = val;
2816         ret = 0;
2817     }
2818 
2819     return ret;
2820 }
2821 
2822 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2823 {
2824     void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2825     int err;
2826 
2827     if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2828         return demux_c15_set(reg->id, uaddr);
2829 
2830     err = set_invariant_sys_reg(reg->id, uaddr);
2831     if (err != -ENOENT)
2832         return err;
2833 
2834     return kvm_sys_reg_set_user(vcpu, reg,
2835                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2836 }
2837 
2838 static unsigned int num_demux_regs(void)
2839 {
2840     unsigned int i, count = 0;
2841 
2842     for (i = 0; i < CSSELR_MAX; i++)
2843         if (is_valid_cache(i))
2844             count++;
2845 
2846     return count;
2847 }
2848 
2849 static int write_demux_regids(u64 __user *uindices)
2850 {
2851     u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2852     unsigned int i;
2853 
2854     val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2855     for (i = 0; i < CSSELR_MAX; i++) {
2856         if (!is_valid_cache(i))
2857             continue;
2858         if (put_user(val | i, uindices))
2859             return -EFAULT;
2860         uindices++;
2861     }
2862     return 0;
2863 }
2864 
2865 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2866 {
2867     return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2868         KVM_REG_ARM64_SYSREG |
2869         (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2870         (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2871         (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2872         (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2873         (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2874 }
2875 
2876 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2877 {
2878     if (!*uind)
2879         return true;
2880 
2881     if (put_user(sys_reg_to_index(reg), *uind))
2882         return false;
2883 
2884     (*uind)++;
2885     return true;
2886 }
2887 
2888 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2889                 const struct sys_reg_desc *rd,
2890                 u64 __user **uind,
2891                 unsigned int *total)
2892 {
2893     /*
2894      * Ignore registers we trap but don't save,
2895      * and for which no custom user accessor is provided.
2896      */
2897     if (!(rd->reg || rd->get_user))
2898         return 0;
2899 
2900     if (sysreg_hidden(vcpu, rd))
2901         return 0;
2902 
2903     if (!copy_reg_to_user(rd, uind))
2904         return -EFAULT;
2905 
2906     (*total)++;
2907     return 0;
2908 }
2909 
2910 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2911 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2912 {
2913     const struct sys_reg_desc *i2, *end2;
2914     unsigned int total = 0;
2915     int err;
2916 
2917     i2 = sys_reg_descs;
2918     end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2919 
2920     while (i2 != end2) {
2921         err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2922         if (err)
2923             return err;
2924     }
2925     return total;
2926 }
2927 
2928 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2929 {
2930     return ARRAY_SIZE(invariant_sys_regs)
2931         + num_demux_regs()
2932         + walk_sys_regs(vcpu, (u64 __user *)NULL);
2933 }
2934 
2935 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2936 {
2937     unsigned int i;
2938     int err;
2939 
2940     /* Then give them all the invariant registers' indices. */
2941     for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2942         if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2943             return -EFAULT;
2944         uindices++;
2945     }
2946 
2947     err = walk_sys_regs(vcpu, uindices);
2948     if (err < 0)
2949         return err;
2950     uindices += err;
2951 
2952     return write_demux_regids(uindices);
2953 }
2954 
2955 int kvm_sys_reg_table_init(void)
2956 {
2957     bool valid = true;
2958     unsigned int i;
2959     struct sys_reg_desc clidr;
2960 
2961     /* Make sure tables are unique and in order. */
2962     valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
2963     valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
2964     valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
2965     valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
2966     valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
2967     valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
2968 
2969     if (!valid)
2970         return -EINVAL;
2971 
2972     /* We abuse the reset function to overwrite the table itself. */
2973     for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2974         invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2975 
2976     /*
2977      * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2978      *
2979      *   If software reads the Cache Type fields from Ctype1
2980      *   upwards, once it has seen a value of 0b000, no caches
2981      *   exist at further-out levels of the hierarchy. So, for
2982      *   example, if Ctype3 is the first Cache Type field with a
2983      *   value of 0b000, the values of Ctype4 to Ctype7 must be
2984      *   ignored.
2985      */
2986     get_clidr_el1(NULL, &clidr); /* Ugly... */
2987     cache_levels = clidr.val;
2988     for (i = 0; i < 7; i++)
2989         if (((cache_levels >> (i*3)) & 7) == 0)
2990             break;
2991     /* Clear all higher bits. */
2992     cache_levels &= (1 << (i*3))-1;
2993 
2994     return 0;
2995 }