0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include <linux/bitfield.h>
0011 #include <asm/kvm_pgtable.h>
0012 #include <asm/stage2_pgtable.h>
0013
0014
0015 #define KVM_PTE_TYPE BIT(1)
0016 #define KVM_PTE_TYPE_BLOCK 0
0017 #define KVM_PTE_TYPE_PAGE 1
0018 #define KVM_PTE_TYPE_TABLE 1
0019
0020 #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
0021
0022 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
0023 #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
0024 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3
0025 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1
0026 #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
0027 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
0028 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
0029
0030 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
0031 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
0032 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
0033 #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
0034 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
0035 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
0036
0037 #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51)
0038
0039 #define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
0040
0041 #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
0042
0043 #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
0044
0045 #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
0046 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
0047 KVM_PTE_LEAF_ATTR_HI_S2_XN)
0048
0049 #define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
0050 #define KVM_MAX_OWNER_ID 1
0051
0052 struct kvm_pgtable_walk_data {
0053 struct kvm_pgtable *pgt;
0054 struct kvm_pgtable_walker *walker;
0055
0056 u64 addr;
0057 u64 end;
0058 };
0059
0060 #define KVM_PHYS_INVALID (-1ULL)
0061
0062 static bool kvm_phys_is_valid(u64 phys)
0063 {
0064 return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_PARANGE_MAX));
0065 }
0066
0067 static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
0068 {
0069 u64 granule = kvm_granule_size(level);
0070
0071 if (!kvm_level_supports_block_mapping(level))
0072 return false;
0073
0074 if (granule > (end - addr))
0075 return false;
0076
0077 if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
0078 return false;
0079
0080 return IS_ALIGNED(addr, granule);
0081 }
0082
0083 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
0084 {
0085 u64 shift = kvm_granule_shift(level);
0086 u64 mask = BIT(PAGE_SHIFT - 3) - 1;
0087
0088 return (data->addr >> shift) & mask;
0089 }
0090
0091 static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
0092 {
0093 u64 shift = kvm_granule_shift(pgt->start_level - 1);
0094 u64 mask = BIT(pgt->ia_bits) - 1;
0095
0096 return (addr & mask) >> shift;
0097 }
0098
0099 static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
0100 {
0101 return __kvm_pgd_page_idx(data->pgt, data->addr);
0102 }
0103
0104 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
0105 {
0106 struct kvm_pgtable pgt = {
0107 .ia_bits = ia_bits,
0108 .start_level = start_level,
0109 };
0110
0111 return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
0112 }
0113
0114 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
0115 {
0116 if (level == KVM_PGTABLE_MAX_LEVELS - 1)
0117 return false;
0118
0119 if (!kvm_pte_valid(pte))
0120 return false;
0121
0122 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
0123 }
0124
0125 static kvm_pte_t kvm_phys_to_pte(u64 pa)
0126 {
0127 kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;
0128
0129 if (PAGE_SHIFT == 16)
0130 pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
0131
0132 return pte;
0133 }
0134
0135 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
0136 {
0137 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
0138 }
0139
0140 static void kvm_clear_pte(kvm_pte_t *ptep)
0141 {
0142 WRITE_ONCE(*ptep, 0);
0143 }
0144
0145 static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp,
0146 struct kvm_pgtable_mm_ops *mm_ops)
0147 {
0148 kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
0149
0150 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
0151 pte |= KVM_PTE_VALID;
0152
0153 WARN_ON(kvm_pte_valid(old));
0154 smp_store_release(ptep, pte);
0155 }
0156
0157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
0158 {
0159 kvm_pte_t pte = kvm_phys_to_pte(pa);
0160 u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
0161 KVM_PTE_TYPE_BLOCK;
0162
0163 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
0164 pte |= FIELD_PREP(KVM_PTE_TYPE, type);
0165 pte |= KVM_PTE_VALID;
0166
0167 return pte;
0168 }
0169
0170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
0171 {
0172 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
0173 }
0174
0175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
0176 u32 level, kvm_pte_t *ptep,
0177 enum kvm_pgtable_walk_flags flag)
0178 {
0179 struct kvm_pgtable_walker *walker = data->walker;
0180 return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
0181 }
0182
0183 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
0184 kvm_pte_t *pgtable, u32 level);
0185
0186 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
0187 kvm_pte_t *ptep, u32 level)
0188 {
0189 int ret = 0;
0190 u64 addr = data->addr;
0191 kvm_pte_t *childp, pte = *ptep;
0192 bool table = kvm_pte_table(pte, level);
0193 enum kvm_pgtable_walk_flags flags = data->walker->flags;
0194
0195 if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
0196 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
0197 KVM_PGTABLE_WALK_TABLE_PRE);
0198 }
0199
0200 if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
0201 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
0202 KVM_PGTABLE_WALK_LEAF);
0203 pte = *ptep;
0204 table = kvm_pte_table(pte, level);
0205 }
0206
0207 if (ret)
0208 goto out;
0209
0210 if (!table) {
0211 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
0212 data->addr += kvm_granule_size(level);
0213 goto out;
0214 }
0215
0216 childp = kvm_pte_follow(pte, data->pgt->mm_ops);
0217 ret = __kvm_pgtable_walk(data, childp, level + 1);
0218 if (ret)
0219 goto out;
0220
0221 if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
0222 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
0223 KVM_PGTABLE_WALK_TABLE_POST);
0224 }
0225
0226 out:
0227 return ret;
0228 }
0229
0230 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
0231 kvm_pte_t *pgtable, u32 level)
0232 {
0233 u32 idx;
0234 int ret = 0;
0235
0236 if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
0237 return -EINVAL;
0238
0239 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
0240 kvm_pte_t *ptep = &pgtable[idx];
0241
0242 if (data->addr >= data->end)
0243 break;
0244
0245 ret = __kvm_pgtable_visit(data, ptep, level);
0246 if (ret)
0247 break;
0248 }
0249
0250 return ret;
0251 }
0252
0253 static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
0254 {
0255 u32 idx;
0256 int ret = 0;
0257 struct kvm_pgtable *pgt = data->pgt;
0258 u64 limit = BIT(pgt->ia_bits);
0259
0260 if (data->addr > limit || data->end > limit)
0261 return -ERANGE;
0262
0263 if (!pgt->pgd)
0264 return -EINVAL;
0265
0266 for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
0267 kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];
0268
0269 ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
0270 if (ret)
0271 break;
0272 }
0273
0274 return ret;
0275 }
0276
0277 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
0278 struct kvm_pgtable_walker *walker)
0279 {
0280 struct kvm_pgtable_walk_data walk_data = {
0281 .pgt = pgt,
0282 .addr = ALIGN_DOWN(addr, PAGE_SIZE),
0283 .end = PAGE_ALIGN(walk_data.addr + size),
0284 .walker = walker,
0285 };
0286
0287 return _kvm_pgtable_walk(&walk_data);
0288 }
0289
0290 struct leaf_walk_data {
0291 kvm_pte_t pte;
0292 u32 level;
0293 };
0294
0295 static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
0296 enum kvm_pgtable_walk_flags flag, void * const arg)
0297 {
0298 struct leaf_walk_data *data = arg;
0299
0300 data->pte = *ptep;
0301 data->level = level;
0302
0303 return 0;
0304 }
0305
0306 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
0307 kvm_pte_t *ptep, u32 *level)
0308 {
0309 struct leaf_walk_data data;
0310 struct kvm_pgtable_walker walker = {
0311 .cb = leaf_walker,
0312 .flags = KVM_PGTABLE_WALK_LEAF,
0313 .arg = &data,
0314 };
0315 int ret;
0316
0317 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
0318 PAGE_SIZE, &walker);
0319 if (!ret) {
0320 if (ptep)
0321 *ptep = data.pte;
0322 if (level)
0323 *level = data.level;
0324 }
0325
0326 return ret;
0327 }
0328
0329 struct hyp_map_data {
0330 u64 phys;
0331 kvm_pte_t attr;
0332 struct kvm_pgtable_mm_ops *mm_ops;
0333 };
0334
0335 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
0336 {
0337 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
0338 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
0339 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
0340 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
0341 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
0342 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
0343
0344 if (!(prot & KVM_PGTABLE_PROT_R))
0345 return -EINVAL;
0346
0347 if (prot & KVM_PGTABLE_PROT_X) {
0348 if (prot & KVM_PGTABLE_PROT_W)
0349 return -EINVAL;
0350
0351 if (device)
0352 return -EINVAL;
0353 } else {
0354 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
0355 }
0356
0357 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
0358 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
0359 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
0360 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
0361 *ptep = attr;
0362
0363 return 0;
0364 }
0365
0366 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
0367 {
0368 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
0369 u32 ap;
0370
0371 if (!kvm_pte_valid(pte))
0372 return prot;
0373
0374 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
0375 prot |= KVM_PGTABLE_PROT_X;
0376
0377 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
0378 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
0379 prot |= KVM_PGTABLE_PROT_R;
0380 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
0381 prot |= KVM_PGTABLE_PROT_RW;
0382
0383 return prot;
0384 }
0385
0386 static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
0387 kvm_pte_t *ptep, struct hyp_map_data *data)
0388 {
0389 kvm_pte_t new, old = *ptep;
0390 u64 granule = kvm_granule_size(level), phys = data->phys;
0391
0392 if (!kvm_block_mapping_supported(addr, end, phys, level))
0393 return false;
0394
0395 data->phys += granule;
0396 new = kvm_init_valid_leaf_pte(phys, data->attr, level);
0397 if (old == new)
0398 return true;
0399 if (!kvm_pte_valid(old))
0400 data->mm_ops->get_page(ptep);
0401 else if (WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
0402 return false;
0403
0404 smp_store_release(ptep, new);
0405 return true;
0406 }
0407
0408 static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
0409 enum kvm_pgtable_walk_flags flag, void * const arg)
0410 {
0411 kvm_pte_t *childp;
0412 struct hyp_map_data *data = arg;
0413 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
0414
0415 if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
0416 return 0;
0417
0418 if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
0419 return -EINVAL;
0420
0421 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
0422 if (!childp)
0423 return -ENOMEM;
0424
0425 kvm_set_table_pte(ptep, childp, mm_ops);
0426 mm_ops->get_page(ptep);
0427 return 0;
0428 }
0429
0430 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
0431 enum kvm_pgtable_prot prot)
0432 {
0433 int ret;
0434 struct hyp_map_data map_data = {
0435 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
0436 .mm_ops = pgt->mm_ops,
0437 };
0438 struct kvm_pgtable_walker walker = {
0439 .cb = hyp_map_walker,
0440 .flags = KVM_PGTABLE_WALK_LEAF,
0441 .arg = &map_data,
0442 };
0443
0444 ret = hyp_set_prot_attr(prot, &map_data.attr);
0445 if (ret)
0446 return ret;
0447
0448 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
0449 dsb(ishst);
0450 isb();
0451 return ret;
0452 }
0453
0454 struct hyp_unmap_data {
0455 u64 unmapped;
0456 struct kvm_pgtable_mm_ops *mm_ops;
0457 };
0458
0459 static int hyp_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
0460 enum kvm_pgtable_walk_flags flag, void * const arg)
0461 {
0462 kvm_pte_t pte = *ptep, *childp = NULL;
0463 u64 granule = kvm_granule_size(level);
0464 struct hyp_unmap_data *data = arg;
0465 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
0466
0467 if (!kvm_pte_valid(pte))
0468 return -EINVAL;
0469
0470 if (kvm_pte_table(pte, level)) {
0471 childp = kvm_pte_follow(pte, mm_ops);
0472
0473 if (mm_ops->page_count(childp) != 1)
0474 return 0;
0475
0476 kvm_clear_pte(ptep);
0477 dsb(ishst);
0478 __tlbi_level(vae2is, __TLBI_VADDR(addr, 0), level);
0479 } else {
0480 if (end - addr < granule)
0481 return -EINVAL;
0482
0483 kvm_clear_pte(ptep);
0484 dsb(ishst);
0485 __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level);
0486 data->unmapped += granule;
0487 }
0488
0489 dsb(ish);
0490 isb();
0491 mm_ops->put_page(ptep);
0492
0493 if (childp)
0494 mm_ops->put_page(childp);
0495
0496 return 0;
0497 }
0498
0499 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
0500 {
0501 struct hyp_unmap_data unmap_data = {
0502 .mm_ops = pgt->mm_ops,
0503 };
0504 struct kvm_pgtable_walker walker = {
0505 .cb = hyp_unmap_walker,
0506 .arg = &unmap_data,
0507 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
0508 };
0509
0510 if (!pgt->mm_ops->page_count)
0511 return 0;
0512
0513 kvm_pgtable_walk(pgt, addr, size, &walker);
0514 return unmap_data.unmapped;
0515 }
0516
0517 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
0518 struct kvm_pgtable_mm_ops *mm_ops)
0519 {
0520 u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
0521
0522 pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
0523 if (!pgt->pgd)
0524 return -ENOMEM;
0525
0526 pgt->ia_bits = va_bits;
0527 pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels;
0528 pgt->mm_ops = mm_ops;
0529 pgt->mmu = NULL;
0530 pgt->force_pte_cb = NULL;
0531
0532 return 0;
0533 }
0534
0535 static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
0536 enum kvm_pgtable_walk_flags flag, void * const arg)
0537 {
0538 struct kvm_pgtable_mm_ops *mm_ops = arg;
0539 kvm_pte_t pte = *ptep;
0540
0541 if (!kvm_pte_valid(pte))
0542 return 0;
0543
0544 mm_ops->put_page(ptep);
0545
0546 if (kvm_pte_table(pte, level))
0547 mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
0548
0549 return 0;
0550 }
0551
0552 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
0553 {
0554 struct kvm_pgtable_walker walker = {
0555 .cb = hyp_free_walker,
0556 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
0557 .arg = pgt->mm_ops,
0558 };
0559
0560 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
0561 pgt->mm_ops->put_page(pgt->pgd);
0562 pgt->pgd = NULL;
0563 }
0564
0565 struct stage2_map_data {
0566 u64 phys;
0567 kvm_pte_t attr;
0568 u8 owner_id;
0569
0570 kvm_pte_t *anchor;
0571 kvm_pte_t *childp;
0572
0573 struct kvm_s2_mmu *mmu;
0574 void *memcache;
0575
0576 struct kvm_pgtable_mm_ops *mm_ops;
0577
0578
0579 bool force_pte;
0580 };
0581
0582 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
0583 {
0584 u64 vtcr = VTCR_EL2_FLAGS;
0585 u8 lvls;
0586
0587 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
0588 vtcr |= VTCR_EL2_T0SZ(phys_shift);
0589
0590
0591
0592
0593 lvls = stage2_pgtable_levels(phys_shift);
0594 if (lvls < 2)
0595 lvls = 2;
0596 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
0597
0598
0599
0600
0601
0602
0603 vtcr |= VTCR_EL2_HA;
0604
0605
0606 vtcr |= (get_vmid_bits(mmfr1) == 16) ?
0607 VTCR_EL2_VS_16BIT :
0608 VTCR_EL2_VS_8BIT;
0609
0610 return vtcr;
0611 }
0612
0613 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
0614 {
0615 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
0616 return false;
0617
0618 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
0619 }
0620
0621 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
0622
0623 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
0624 kvm_pte_t *ptep)
0625 {
0626 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
0627 kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
0628 KVM_S2_MEMATTR(pgt, NORMAL);
0629 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
0630
0631 if (!(prot & KVM_PGTABLE_PROT_X))
0632 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
0633 else if (device)
0634 return -EINVAL;
0635
0636 if (prot & KVM_PGTABLE_PROT_R)
0637 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
0638
0639 if (prot & KVM_PGTABLE_PROT_W)
0640 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
0641
0642 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
0643 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
0644 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
0645 *ptep = attr;
0646
0647 return 0;
0648 }
0649
0650 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
0651 {
0652 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
0653
0654 if (!kvm_pte_valid(pte))
0655 return prot;
0656
0657 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
0658 prot |= KVM_PGTABLE_PROT_R;
0659 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
0660 prot |= KVM_PGTABLE_PROT_W;
0661 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
0662 prot |= KVM_PGTABLE_PROT_X;
0663
0664 return prot;
0665 }
0666
0667 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
0668 {
0669 if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
0670 return true;
0671
0672 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
0673 }
0674
0675 static bool stage2_pte_is_counted(kvm_pte_t pte)
0676 {
0677
0678
0679
0680
0681
0682 return !!pte;
0683 }
0684
0685 static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr,
0686 u32 level, struct kvm_pgtable_mm_ops *mm_ops)
0687 {
0688
0689
0690
0691
0692 if (kvm_pte_valid(*ptep)) {
0693 kvm_clear_pte(ptep);
0694 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
0695 }
0696
0697 mm_ops->put_page(ptep);
0698 }
0699
0700 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
0701 {
0702 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
0703 return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
0704 }
0705
0706 static bool stage2_pte_executable(kvm_pte_t pte)
0707 {
0708 return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
0709 }
0710
0711 static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level,
0712 struct stage2_map_data *data)
0713 {
0714 if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1)))
0715 return false;
0716
0717 return kvm_block_mapping_supported(addr, end, data->phys, level);
0718 }
0719
0720 static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
0721 kvm_pte_t *ptep,
0722 struct stage2_map_data *data)
0723 {
0724 kvm_pte_t new, old = *ptep;
0725 u64 granule = kvm_granule_size(level), phys = data->phys;
0726 struct kvm_pgtable *pgt = data->mmu->pgt;
0727 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
0728
0729 if (!stage2_leaf_mapping_allowed(addr, end, level, data))
0730 return -E2BIG;
0731
0732 if (kvm_phys_is_valid(phys))
0733 new = kvm_init_valid_leaf_pte(phys, data->attr, level);
0734 else
0735 new = kvm_init_invalid_leaf_owner(data->owner_id);
0736
0737 if (stage2_pte_is_counted(old)) {
0738
0739
0740
0741
0742
0743
0744 if (!stage2_pte_needs_update(old, new))
0745 return -EAGAIN;
0746
0747 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
0748 }
0749
0750
0751 if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
0752 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
0753 granule);
0754
0755 if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
0756 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
0757
0758 smp_store_release(ptep, new);
0759 if (stage2_pte_is_counted(new))
0760 mm_ops->get_page(ptep);
0761 if (kvm_phys_is_valid(phys))
0762 data->phys += granule;
0763 return 0;
0764 }
0765
0766 static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
0767 kvm_pte_t *ptep,
0768 struct stage2_map_data *data)
0769 {
0770 if (data->anchor)
0771 return 0;
0772
0773 if (!stage2_leaf_mapping_allowed(addr, end, level, data))
0774 return 0;
0775
0776 data->childp = kvm_pte_follow(*ptep, data->mm_ops);
0777 kvm_clear_pte(ptep);
0778
0779
0780
0781
0782
0783
0784 kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
0785 data->anchor = ptep;
0786 return 0;
0787 }
0788
0789 static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
0790 struct stage2_map_data *data)
0791 {
0792 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
0793 kvm_pte_t *childp, pte = *ptep;
0794 int ret;
0795
0796 if (data->anchor) {
0797 if (stage2_pte_is_counted(pte))
0798 mm_ops->put_page(ptep);
0799
0800 return 0;
0801 }
0802
0803 ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data);
0804 if (ret != -E2BIG)
0805 return ret;
0806
0807 if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
0808 return -EINVAL;
0809
0810 if (!data->memcache)
0811 return -ENOMEM;
0812
0813 childp = mm_ops->zalloc_page(data->memcache);
0814 if (!childp)
0815 return -ENOMEM;
0816
0817
0818
0819
0820
0821
0822 if (stage2_pte_is_counted(pte))
0823 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
0824
0825 kvm_set_table_pte(ptep, childp, mm_ops);
0826 mm_ops->get_page(ptep);
0827
0828 return 0;
0829 }
0830
0831 static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
0832 kvm_pte_t *ptep,
0833 struct stage2_map_data *data)
0834 {
0835 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
0836 kvm_pte_t *childp;
0837 int ret = 0;
0838
0839 if (!data->anchor)
0840 return 0;
0841
0842 if (data->anchor == ptep) {
0843 childp = data->childp;
0844 data->anchor = NULL;
0845 data->childp = NULL;
0846 ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
0847 } else {
0848 childp = kvm_pte_follow(*ptep, mm_ops);
0849 }
0850
0851 mm_ops->put_page(childp);
0852 mm_ops->put_page(ptep);
0853
0854 return ret;
0855 }
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876 static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
0877 enum kvm_pgtable_walk_flags flag, void * const arg)
0878 {
0879 struct stage2_map_data *data = arg;
0880
0881 switch (flag) {
0882 case KVM_PGTABLE_WALK_TABLE_PRE:
0883 return stage2_map_walk_table_pre(addr, end, level, ptep, data);
0884 case KVM_PGTABLE_WALK_LEAF:
0885 return stage2_map_walk_leaf(addr, end, level, ptep, data);
0886 case KVM_PGTABLE_WALK_TABLE_POST:
0887 return stage2_map_walk_table_post(addr, end, level, ptep, data);
0888 }
0889
0890 return -EINVAL;
0891 }
0892
0893 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
0894 u64 phys, enum kvm_pgtable_prot prot,
0895 void *mc)
0896 {
0897 int ret;
0898 struct stage2_map_data map_data = {
0899 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
0900 .mmu = pgt->mmu,
0901 .memcache = mc,
0902 .mm_ops = pgt->mm_ops,
0903 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
0904 };
0905 struct kvm_pgtable_walker walker = {
0906 .cb = stage2_map_walker,
0907 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
0908 KVM_PGTABLE_WALK_LEAF |
0909 KVM_PGTABLE_WALK_TABLE_POST,
0910 .arg = &map_data,
0911 };
0912
0913 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
0914 return -EINVAL;
0915
0916 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
0917 if (ret)
0918 return ret;
0919
0920 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
0921 dsb(ishst);
0922 return ret;
0923 }
0924
0925 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
0926 void *mc, u8 owner_id)
0927 {
0928 int ret;
0929 struct stage2_map_data map_data = {
0930 .phys = KVM_PHYS_INVALID,
0931 .mmu = pgt->mmu,
0932 .memcache = mc,
0933 .mm_ops = pgt->mm_ops,
0934 .owner_id = owner_id,
0935 .force_pte = true,
0936 };
0937 struct kvm_pgtable_walker walker = {
0938 .cb = stage2_map_walker,
0939 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
0940 KVM_PGTABLE_WALK_LEAF |
0941 KVM_PGTABLE_WALK_TABLE_POST,
0942 .arg = &map_data,
0943 };
0944
0945 if (owner_id > KVM_MAX_OWNER_ID)
0946 return -EINVAL;
0947
0948 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
0949 return ret;
0950 }
0951
0952 static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
0953 enum kvm_pgtable_walk_flags flag,
0954 void * const arg)
0955 {
0956 struct kvm_pgtable *pgt = arg;
0957 struct kvm_s2_mmu *mmu = pgt->mmu;
0958 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
0959 kvm_pte_t pte = *ptep, *childp = NULL;
0960 bool need_flush = false;
0961
0962 if (!kvm_pte_valid(pte)) {
0963 if (stage2_pte_is_counted(pte)) {
0964 kvm_clear_pte(ptep);
0965 mm_ops->put_page(ptep);
0966 }
0967 return 0;
0968 }
0969
0970 if (kvm_pte_table(pte, level)) {
0971 childp = kvm_pte_follow(pte, mm_ops);
0972
0973 if (mm_ops->page_count(childp) != 1)
0974 return 0;
0975 } else if (stage2_pte_cacheable(pgt, pte)) {
0976 need_flush = !stage2_has_fwb(pgt);
0977 }
0978
0979
0980
0981
0982
0983
0984 stage2_put_pte(ptep, mmu, addr, level, mm_ops);
0985
0986 if (need_flush && mm_ops->dcache_clean_inval_poc)
0987 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops),
0988 kvm_granule_size(level));
0989
0990 if (childp)
0991 mm_ops->put_page(childp);
0992
0993 return 0;
0994 }
0995
0996 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
0997 {
0998 struct kvm_pgtable_walker walker = {
0999 .cb = stage2_unmap_walker,
1000 .arg = pgt,
1001 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1002 };
1003
1004 return kvm_pgtable_walk(pgt, addr, size, &walker);
1005 }
1006
1007 struct stage2_attr_data {
1008 kvm_pte_t attr_set;
1009 kvm_pte_t attr_clr;
1010 kvm_pte_t pte;
1011 u32 level;
1012 struct kvm_pgtable_mm_ops *mm_ops;
1013 };
1014
1015 static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1016 enum kvm_pgtable_walk_flags flag,
1017 void * const arg)
1018 {
1019 kvm_pte_t pte = *ptep;
1020 struct stage2_attr_data *data = arg;
1021 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
1022
1023 if (!kvm_pte_valid(pte))
1024 return 0;
1025
1026 data->level = level;
1027 data->pte = pte;
1028 pte &= ~data->attr_clr;
1029 pte |= data->attr_set;
1030
1031
1032
1033
1034
1035
1036 if (data->pte != pte) {
1037
1038
1039
1040
1041 if (mm_ops->icache_inval_pou &&
1042 stage2_pte_executable(pte) && !stage2_pte_executable(*ptep))
1043 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1044 kvm_granule_size(level));
1045 WRITE_ONCE(*ptep, pte);
1046 }
1047
1048 return 0;
1049 }
1050
1051 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1052 u64 size, kvm_pte_t attr_set,
1053 kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1054 u32 *level)
1055 {
1056 int ret;
1057 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1058 struct stage2_attr_data data = {
1059 .attr_set = attr_set & attr_mask,
1060 .attr_clr = attr_clr & attr_mask,
1061 .mm_ops = pgt->mm_ops,
1062 };
1063 struct kvm_pgtable_walker walker = {
1064 .cb = stage2_attr_walker,
1065 .arg = &data,
1066 .flags = KVM_PGTABLE_WALK_LEAF,
1067 };
1068
1069 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1070 if (ret)
1071 return ret;
1072
1073 if (orig_pte)
1074 *orig_pte = data.pte;
1075
1076 if (level)
1077 *level = data.level;
1078 return 0;
1079 }
1080
1081 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1082 {
1083 return stage2_update_leaf_attrs(pgt, addr, size, 0,
1084 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1085 NULL, NULL);
1086 }
1087
1088 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1089 {
1090 kvm_pte_t pte = 0;
1091 stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1092 &pte, NULL);
1093 dsb(ishst);
1094 return pte;
1095 }
1096
1097 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
1098 {
1099 kvm_pte_t pte = 0;
1100 stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
1101 &pte, NULL);
1102
1103
1104
1105
1106
1107
1108 return pte;
1109 }
1110
1111 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
1112 {
1113 kvm_pte_t pte = 0;
1114 stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
1115 return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
1116 }
1117
1118 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1119 enum kvm_pgtable_prot prot)
1120 {
1121 int ret;
1122 u32 level;
1123 kvm_pte_t set = 0, clr = 0;
1124
1125 if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1126 return -EINVAL;
1127
1128 if (prot & KVM_PGTABLE_PROT_R)
1129 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1130
1131 if (prot & KVM_PGTABLE_PROT_W)
1132 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1133
1134 if (prot & KVM_PGTABLE_PROT_X)
1135 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1136
1137 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
1138 if (!ret)
1139 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
1140 return ret;
1141 }
1142
1143 static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1144 enum kvm_pgtable_walk_flags flag,
1145 void * const arg)
1146 {
1147 struct kvm_pgtable *pgt = arg;
1148 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1149 kvm_pte_t pte = *ptep;
1150
1151 if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pgt, pte))
1152 return 0;
1153
1154 if (mm_ops->dcache_clean_inval_poc)
1155 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops),
1156 kvm_granule_size(level));
1157 return 0;
1158 }
1159
1160 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1161 {
1162 struct kvm_pgtable_walker walker = {
1163 .cb = stage2_flush_walker,
1164 .flags = KVM_PGTABLE_WALK_LEAF,
1165 .arg = pgt,
1166 };
1167
1168 if (stage2_has_fwb(pgt))
1169 return 0;
1170
1171 return kvm_pgtable_walk(pgt, addr, size, &walker);
1172 }
1173
1174
1175 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1176 struct kvm_pgtable_mm_ops *mm_ops,
1177 enum kvm_pgtable_stage2_flags flags,
1178 kvm_pgtable_force_pte_cb_t force_pte_cb)
1179 {
1180 size_t pgd_sz;
1181 u64 vtcr = mmu->arch->vtcr;
1182 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1183 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1184 u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1185
1186 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1187 pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz);
1188 if (!pgt->pgd)
1189 return -ENOMEM;
1190
1191 pgt->ia_bits = ia_bits;
1192 pgt->start_level = start_level;
1193 pgt->mm_ops = mm_ops;
1194 pgt->mmu = mmu;
1195 pgt->flags = flags;
1196 pgt->force_pte_cb = force_pte_cb;
1197
1198
1199 dsb(ishst);
1200 return 0;
1201 }
1202
1203 static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1204 enum kvm_pgtable_walk_flags flag,
1205 void * const arg)
1206 {
1207 struct kvm_pgtable_mm_ops *mm_ops = arg;
1208 kvm_pte_t pte = *ptep;
1209
1210 if (!stage2_pte_is_counted(pte))
1211 return 0;
1212
1213 mm_ops->put_page(ptep);
1214
1215 if (kvm_pte_table(pte, level))
1216 mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
1217
1218 return 0;
1219 }
1220
1221 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1222 {
1223 size_t pgd_sz;
1224 struct kvm_pgtable_walker walker = {
1225 .cb = stage2_free_walker,
1226 .flags = KVM_PGTABLE_WALK_LEAF |
1227 KVM_PGTABLE_WALK_TABLE_POST,
1228 .arg = pgt->mm_ops,
1229 };
1230
1231 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1232 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1233 pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz);
1234 pgt->pgd = NULL;
1235 }