0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011 #include <linux/bits.h>
0012 #include <linux/errno.h>
0013 #include <linux/err.h>
0014 #include <linux/nospec.h>
0015 #include <linux/kvm_host.h>
0016 #include <linux/module.h>
0017 #include <linux/stddef.h>
0018 #include <linux/string.h>
0019 #include <linux/vmalloc.h>
0020 #include <linux/fs.h>
0021 #include <kvm/arm_hypercalls.h>
0022 #include <asm/cputype.h>
0023 #include <linux/uaccess.h>
0024 #include <asm/fpsimd.h>
0025 #include <asm/kvm.h>
0026 #include <asm/kvm_emulate.h>
0027 #include <asm/sigcontext.h>
0028
0029 #include "trace.h"
0030
0031 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
0032 KVM_GENERIC_VM_STATS()
0033 };
0034
0035 const struct kvm_stats_header kvm_vm_stats_header = {
0036 .name_size = KVM_STATS_NAME_SIZE,
0037 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
0038 .id_offset = sizeof(struct kvm_stats_header),
0039 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
0040 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
0041 sizeof(kvm_vm_stats_desc),
0042 };
0043
0044 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
0045 KVM_GENERIC_VCPU_STATS(),
0046 STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
0047 STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
0048 STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
0049 STATS_DESC_COUNTER(VCPU, mmio_exit_user),
0050 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
0051 STATS_DESC_COUNTER(VCPU, signal_exits),
0052 STATS_DESC_COUNTER(VCPU, exits)
0053 };
0054
0055 const struct kvm_stats_header kvm_vcpu_stats_header = {
0056 .name_size = KVM_STATS_NAME_SIZE,
0057 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
0058 .id_offset = sizeof(struct kvm_stats_header),
0059 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
0060 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
0061 sizeof(kvm_vcpu_stats_desc),
0062 };
0063
0064 static bool core_reg_offset_is_vreg(u64 off)
0065 {
0066 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
0067 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
0068 }
0069
0070 static u64 core_reg_offset_from_id(u64 id)
0071 {
0072 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
0073 }
0074
0075 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
0076 {
0077 int size;
0078
0079 switch (off) {
0080 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
0081 KVM_REG_ARM_CORE_REG(regs.regs[30]):
0082 case KVM_REG_ARM_CORE_REG(regs.sp):
0083 case KVM_REG_ARM_CORE_REG(regs.pc):
0084 case KVM_REG_ARM_CORE_REG(regs.pstate):
0085 case KVM_REG_ARM_CORE_REG(sp_el1):
0086 case KVM_REG_ARM_CORE_REG(elr_el1):
0087 case KVM_REG_ARM_CORE_REG(spsr[0]) ...
0088 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
0089 size = sizeof(__u64);
0090 break;
0091
0092 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
0093 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
0094 size = sizeof(__uint128_t);
0095 break;
0096
0097 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
0098 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
0099 size = sizeof(__u32);
0100 break;
0101
0102 default:
0103 return -EINVAL;
0104 }
0105
0106 if (!IS_ALIGNED(off, size / sizeof(__u32)))
0107 return -EINVAL;
0108
0109
0110
0111
0112
0113
0114 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
0115 return -EINVAL;
0116
0117 return size;
0118 }
0119
0120 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0121 {
0122 u64 off = core_reg_offset_from_id(reg->id);
0123 int size = core_reg_size_from_offset(vcpu, off);
0124
0125 if (size < 0)
0126 return NULL;
0127
0128 if (KVM_REG_SIZE(reg->id) != size)
0129 return NULL;
0130
0131 switch (off) {
0132 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
0133 KVM_REG_ARM_CORE_REG(regs.regs[30]):
0134 off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
0135 off /= 2;
0136 return &vcpu->arch.ctxt.regs.regs[off];
0137
0138 case KVM_REG_ARM_CORE_REG(regs.sp):
0139 return &vcpu->arch.ctxt.regs.sp;
0140
0141 case KVM_REG_ARM_CORE_REG(regs.pc):
0142 return &vcpu->arch.ctxt.regs.pc;
0143
0144 case KVM_REG_ARM_CORE_REG(regs.pstate):
0145 return &vcpu->arch.ctxt.regs.pstate;
0146
0147 case KVM_REG_ARM_CORE_REG(sp_el1):
0148 return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
0149
0150 case KVM_REG_ARM_CORE_REG(elr_el1):
0151 return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
0152
0153 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
0154 return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
0155
0156 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
0157 return &vcpu->arch.ctxt.spsr_abt;
0158
0159 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
0160 return &vcpu->arch.ctxt.spsr_und;
0161
0162 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
0163 return &vcpu->arch.ctxt.spsr_irq;
0164
0165 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
0166 return &vcpu->arch.ctxt.spsr_fiq;
0167
0168 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
0169 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
0170 off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
0171 off /= 4;
0172 return &vcpu->arch.ctxt.fp_regs.vregs[off];
0173
0174 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
0175 return &vcpu->arch.ctxt.fp_regs.fpsr;
0176
0177 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
0178 return &vcpu->arch.ctxt.fp_regs.fpcr;
0179
0180 default:
0181 return NULL;
0182 }
0183 }
0184
0185 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0186 {
0187
0188
0189
0190
0191
0192
0193 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
0194 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
0195 void *addr;
0196 u32 off;
0197
0198
0199 off = core_reg_offset_from_id(reg->id);
0200 if (off >= nr_regs ||
0201 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
0202 return -ENOENT;
0203
0204 addr = core_reg_addr(vcpu, reg);
0205 if (!addr)
0206 return -EINVAL;
0207
0208 if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
0209 return -EFAULT;
0210
0211 return 0;
0212 }
0213
0214 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0215 {
0216 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
0217 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
0218 __uint128_t tmp;
0219 void *valp = &tmp, *addr;
0220 u64 off;
0221 int err = 0;
0222
0223
0224 off = core_reg_offset_from_id(reg->id);
0225 if (off >= nr_regs ||
0226 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
0227 return -ENOENT;
0228
0229 addr = core_reg_addr(vcpu, reg);
0230 if (!addr)
0231 return -EINVAL;
0232
0233 if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
0234 return -EINVAL;
0235
0236 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
0237 err = -EFAULT;
0238 goto out;
0239 }
0240
0241 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
0242 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
0243 switch (mode) {
0244 case PSR_AA32_MODE_USR:
0245 if (!kvm_supports_32bit_el0())
0246 return -EINVAL;
0247 break;
0248 case PSR_AA32_MODE_FIQ:
0249 case PSR_AA32_MODE_IRQ:
0250 case PSR_AA32_MODE_SVC:
0251 case PSR_AA32_MODE_ABT:
0252 case PSR_AA32_MODE_UND:
0253 if (!vcpu_el1_is_32bit(vcpu))
0254 return -EINVAL;
0255 break;
0256 case PSR_MODE_EL0t:
0257 case PSR_MODE_EL1t:
0258 case PSR_MODE_EL1h:
0259 if (vcpu_el1_is_32bit(vcpu))
0260 return -EINVAL;
0261 break;
0262 default:
0263 err = -EINVAL;
0264 goto out;
0265 }
0266 }
0267
0268 memcpy(addr, valp, KVM_REG_SIZE(reg->id));
0269
0270 if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
0271 int i, nr_reg;
0272
0273 switch (*vcpu_cpsr(vcpu)) {
0274
0275
0276
0277
0278
0279 case PSR_AA32_MODE_USR:
0280 case PSR_AA32_MODE_SYS:
0281 nr_reg = 15;
0282 break;
0283
0284
0285
0286
0287
0288 default:
0289 nr_reg = 31;
0290 break;
0291 }
0292
0293 for (i = 0; i < nr_reg; i++)
0294 vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
0295
0296 *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
0297 }
0298 out:
0299 return err;
0300 }
0301
0302 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
0303 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
0304 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
0305
0306 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0307 {
0308 unsigned int max_vq, vq;
0309 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
0310
0311 if (!vcpu_has_sve(vcpu))
0312 return -ENOENT;
0313
0314 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
0315 return -EINVAL;
0316
0317 memset(vqs, 0, sizeof(vqs));
0318
0319 max_vq = vcpu_sve_max_vq(vcpu);
0320 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
0321 if (sve_vq_available(vq))
0322 vqs[vq_word(vq)] |= vq_mask(vq);
0323
0324 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
0325 return -EFAULT;
0326
0327 return 0;
0328 }
0329
0330 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0331 {
0332 unsigned int max_vq, vq;
0333 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
0334
0335 if (!vcpu_has_sve(vcpu))
0336 return -ENOENT;
0337
0338 if (kvm_arm_vcpu_sve_finalized(vcpu))
0339 return -EPERM;
0340
0341 if (WARN_ON(vcpu->arch.sve_state))
0342 return -EINVAL;
0343
0344 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
0345 return -EFAULT;
0346
0347 max_vq = 0;
0348 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
0349 if (vq_present(vqs, vq))
0350 max_vq = vq;
0351
0352 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
0353 return -EINVAL;
0354
0355
0356
0357
0358
0359
0360
0361
0362 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
0363 if (vq_present(vqs, vq) != sve_vq_available(vq))
0364 return -EINVAL;
0365
0366
0367 if (max_vq < SVE_VQ_MIN)
0368 return -EINVAL;
0369
0370
0371 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
0372
0373 return 0;
0374 }
0375
0376 #define SVE_REG_SLICE_SHIFT 0
0377 #define SVE_REG_SLICE_BITS 5
0378 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
0379 #define SVE_REG_ID_BITS 5
0380
0381 #define SVE_REG_SLICE_MASK \
0382 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
0383 SVE_REG_SLICE_SHIFT)
0384 #define SVE_REG_ID_MASK \
0385 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
0386
0387 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
0388
0389 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
0390 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
0391
0392
0393
0394
0395
0396
0397
0398 #define vcpu_sve_slices(vcpu) 1
0399
0400
0401 struct sve_state_reg_region {
0402 unsigned int koffset;
0403 unsigned int klen;
0404 unsigned int upad;
0405 };
0406
0407
0408
0409
0410
0411 static int sve_reg_to_region(struct sve_state_reg_region *region,
0412 struct kvm_vcpu *vcpu,
0413 const struct kvm_one_reg *reg)
0414 {
0415
0416 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
0417 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
0418 SVE_NUM_SLICES - 1);
0419
0420
0421 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
0422 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
0423
0424 unsigned int vq;
0425 unsigned int reg_num;
0426
0427 unsigned int reqoffset, reqlen;
0428 unsigned int maxlen;
0429
0430 size_t sve_state_size;
0431
0432 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
0433 SVE_NUM_SLICES - 1);
0434
0435
0436 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
0437
0438
0439 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
0440
0441 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
0442
0443 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
0444 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
0445 return -ENOENT;
0446
0447 vq = vcpu_sve_max_vq(vcpu);
0448
0449 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
0450 SVE_SIG_REGS_OFFSET;
0451 reqlen = KVM_SVE_ZREG_SIZE;
0452 maxlen = SVE_SIG_ZREG_SIZE(vq);
0453 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
0454 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
0455 return -ENOENT;
0456
0457 vq = vcpu_sve_max_vq(vcpu);
0458
0459 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
0460 SVE_SIG_REGS_OFFSET;
0461 reqlen = KVM_SVE_PREG_SIZE;
0462 maxlen = SVE_SIG_PREG_SIZE(vq);
0463 } else {
0464 return -EINVAL;
0465 }
0466
0467 sve_state_size = vcpu_sve_state_size(vcpu);
0468 if (WARN_ON(!sve_state_size))
0469 return -EINVAL;
0470
0471 region->koffset = array_index_nospec(reqoffset, sve_state_size);
0472 region->klen = min(maxlen, reqlen);
0473 region->upad = reqlen - region->klen;
0474
0475 return 0;
0476 }
0477
0478 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0479 {
0480 int ret;
0481 struct sve_state_reg_region region;
0482 char __user *uptr = (char __user *)reg->addr;
0483
0484
0485 if (reg->id == KVM_REG_ARM64_SVE_VLS)
0486 return get_sve_vls(vcpu, reg);
0487
0488
0489 ret = sve_reg_to_region(®ion, vcpu, reg);
0490 if (ret)
0491 return ret;
0492
0493 if (!kvm_arm_vcpu_sve_finalized(vcpu))
0494 return -EPERM;
0495
0496 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
0497 region.klen) ||
0498 clear_user(uptr + region.klen, region.upad))
0499 return -EFAULT;
0500
0501 return 0;
0502 }
0503
0504 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0505 {
0506 int ret;
0507 struct sve_state_reg_region region;
0508 const char __user *uptr = (const char __user *)reg->addr;
0509
0510
0511 if (reg->id == KVM_REG_ARM64_SVE_VLS)
0512 return set_sve_vls(vcpu, reg);
0513
0514
0515 ret = sve_reg_to_region(®ion, vcpu, reg);
0516 if (ret)
0517 return ret;
0518
0519 if (!kvm_arm_vcpu_sve_finalized(vcpu))
0520 return -EPERM;
0521
0522 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
0523 region.klen))
0524 return -EFAULT;
0525
0526 return 0;
0527 }
0528
0529 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
0530 {
0531 return -EINVAL;
0532 }
0533
0534 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
0535 {
0536 return -EINVAL;
0537 }
0538
0539 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
0540 u64 __user *uindices)
0541 {
0542 unsigned int i;
0543 int n = 0;
0544
0545 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
0546 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
0547 int size = core_reg_size_from_offset(vcpu, i);
0548
0549 if (size < 0)
0550 continue;
0551
0552 switch (size) {
0553 case sizeof(__u32):
0554 reg |= KVM_REG_SIZE_U32;
0555 break;
0556
0557 case sizeof(__u64):
0558 reg |= KVM_REG_SIZE_U64;
0559 break;
0560
0561 case sizeof(__uint128_t):
0562 reg |= KVM_REG_SIZE_U128;
0563 break;
0564
0565 default:
0566 WARN_ON(1);
0567 continue;
0568 }
0569
0570 if (uindices) {
0571 if (put_user(reg, uindices))
0572 return -EFAULT;
0573 uindices++;
0574 }
0575
0576 n++;
0577 }
0578
0579 return n;
0580 }
0581
0582 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
0583 {
0584 return copy_core_reg_indices(vcpu, NULL);
0585 }
0586
0587
0588
0589
0590
0591 #define NUM_TIMER_REGS 3
0592
0593 static bool is_timer_reg(u64 index)
0594 {
0595 switch (index) {
0596 case KVM_REG_ARM_TIMER_CTL:
0597 case KVM_REG_ARM_TIMER_CNT:
0598 case KVM_REG_ARM_TIMER_CVAL:
0599 return true;
0600 }
0601 return false;
0602 }
0603
0604 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
0605 {
0606 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
0607 return -EFAULT;
0608 uindices++;
0609 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
0610 return -EFAULT;
0611 uindices++;
0612 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
0613 return -EFAULT;
0614
0615 return 0;
0616 }
0617
0618 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0619 {
0620 void __user *uaddr = (void __user *)(long)reg->addr;
0621 u64 val;
0622 int ret;
0623
0624 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
0625 if (ret != 0)
0626 return -EFAULT;
0627
0628 return kvm_arm_timer_set_reg(vcpu, reg->id, val);
0629 }
0630
0631 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0632 {
0633 void __user *uaddr = (void __user *)(long)reg->addr;
0634 u64 val;
0635
0636 val = kvm_arm_timer_get_reg(vcpu, reg->id);
0637 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
0638 }
0639
0640 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
0641 {
0642 const unsigned int slices = vcpu_sve_slices(vcpu);
0643
0644 if (!vcpu_has_sve(vcpu))
0645 return 0;
0646
0647
0648 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
0649
0650 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 )
0651 + 1;
0652 }
0653
0654 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
0655 u64 __user *uindices)
0656 {
0657 const unsigned int slices = vcpu_sve_slices(vcpu);
0658 u64 reg;
0659 unsigned int i, n;
0660 int num_regs = 0;
0661
0662 if (!vcpu_has_sve(vcpu))
0663 return 0;
0664
0665
0666 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
0667
0668
0669
0670
0671
0672 reg = KVM_REG_ARM64_SVE_VLS;
0673 if (put_user(reg, uindices++))
0674 return -EFAULT;
0675 ++num_regs;
0676
0677 for (i = 0; i < slices; i++) {
0678 for (n = 0; n < SVE_NUM_ZREGS; n++) {
0679 reg = KVM_REG_ARM64_SVE_ZREG(n, i);
0680 if (put_user(reg, uindices++))
0681 return -EFAULT;
0682 num_regs++;
0683 }
0684
0685 for (n = 0; n < SVE_NUM_PREGS; n++) {
0686 reg = KVM_REG_ARM64_SVE_PREG(n, i);
0687 if (put_user(reg, uindices++))
0688 return -EFAULT;
0689 num_regs++;
0690 }
0691
0692 reg = KVM_REG_ARM64_SVE_FFR(i);
0693 if (put_user(reg, uindices++))
0694 return -EFAULT;
0695 num_regs++;
0696 }
0697
0698 return num_regs;
0699 }
0700
0701
0702
0703
0704
0705
0706 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
0707 {
0708 unsigned long res = 0;
0709
0710 res += num_core_regs(vcpu);
0711 res += num_sve_regs(vcpu);
0712 res += kvm_arm_num_sys_reg_descs(vcpu);
0713 res += kvm_arm_get_fw_num_regs(vcpu);
0714 res += NUM_TIMER_REGS;
0715
0716 return res;
0717 }
0718
0719
0720
0721
0722
0723
0724 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
0725 {
0726 int ret;
0727
0728 ret = copy_core_reg_indices(vcpu, uindices);
0729 if (ret < 0)
0730 return ret;
0731 uindices += ret;
0732
0733 ret = copy_sve_reg_indices(vcpu, uindices);
0734 if (ret < 0)
0735 return ret;
0736 uindices += ret;
0737
0738 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
0739 if (ret < 0)
0740 return ret;
0741 uindices += kvm_arm_get_fw_num_regs(vcpu);
0742
0743 ret = copy_timer_indices(vcpu, uindices);
0744 if (ret < 0)
0745 return ret;
0746 uindices += NUM_TIMER_REGS;
0747
0748 return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
0749 }
0750
0751 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0752 {
0753
0754 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
0755 return -EINVAL;
0756
0757 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
0758 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
0759 case KVM_REG_ARM_FW:
0760 case KVM_REG_ARM_FW_FEAT_BMAP:
0761 return kvm_arm_get_fw_reg(vcpu, reg);
0762 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
0763 }
0764
0765 if (is_timer_reg(reg->id))
0766 return get_timer_reg(vcpu, reg);
0767
0768 return kvm_arm_sys_reg_get_reg(vcpu, reg);
0769 }
0770
0771 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
0772 {
0773
0774 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
0775 return -EINVAL;
0776
0777 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
0778 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
0779 case KVM_REG_ARM_FW:
0780 case KVM_REG_ARM_FW_FEAT_BMAP:
0781 return kvm_arm_set_fw_reg(vcpu, reg);
0782 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
0783 }
0784
0785 if (is_timer_reg(reg->id))
0786 return set_timer_reg(vcpu, reg);
0787
0788 return kvm_arm_sys_reg_set_reg(vcpu, reg);
0789 }
0790
0791 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
0792 struct kvm_sregs *sregs)
0793 {
0794 return -EINVAL;
0795 }
0796
0797 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
0798 struct kvm_sregs *sregs)
0799 {
0800 return -EINVAL;
0801 }
0802
0803 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
0804 struct kvm_vcpu_events *events)
0805 {
0806 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
0807 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
0808
0809 if (events->exception.serror_pending && events->exception.serror_has_esr)
0810 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
0811
0812
0813
0814
0815
0816
0817
0818 return 0;
0819 }
0820
0821 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
0822 struct kvm_vcpu_events *events)
0823 {
0824 bool serror_pending = events->exception.serror_pending;
0825 bool has_esr = events->exception.serror_has_esr;
0826 bool ext_dabt_pending = events->exception.ext_dabt_pending;
0827
0828 if (serror_pending && has_esr) {
0829 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
0830 return -EINVAL;
0831
0832 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
0833 kvm_set_sei_esr(vcpu, events->exception.serror_esr);
0834 else
0835 return -EINVAL;
0836 } else if (serror_pending) {
0837 kvm_inject_vabt(vcpu);
0838 }
0839
0840 if (ext_dabt_pending)
0841 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
0842
0843 return 0;
0844 }
0845
0846 u32 __attribute_const__ kvm_target_cpu(void)
0847 {
0848 unsigned long implementor = read_cpuid_implementor();
0849 unsigned long part_number = read_cpuid_part_number();
0850
0851 switch (implementor) {
0852 case ARM_CPU_IMP_ARM:
0853 switch (part_number) {
0854 case ARM_CPU_PART_AEM_V8:
0855 return KVM_ARM_TARGET_AEM_V8;
0856 case ARM_CPU_PART_FOUNDATION:
0857 return KVM_ARM_TARGET_FOUNDATION_V8;
0858 case ARM_CPU_PART_CORTEX_A53:
0859 return KVM_ARM_TARGET_CORTEX_A53;
0860 case ARM_CPU_PART_CORTEX_A57:
0861 return KVM_ARM_TARGET_CORTEX_A57;
0862 }
0863 break;
0864 case ARM_CPU_IMP_APM:
0865 switch (part_number) {
0866 case APM_CPU_PART_POTENZA:
0867 return KVM_ARM_TARGET_XGENE_POTENZA;
0868 }
0869 break;
0870 }
0871
0872
0873 return KVM_ARM_TARGET_GENERIC_V8;
0874 }
0875
0876 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
0877 {
0878 u32 target = kvm_target_cpu();
0879
0880 memset(init, 0, sizeof(*init));
0881
0882
0883
0884
0885
0886
0887
0888 init->target = (__u32)target;
0889 }
0890
0891 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
0892 {
0893 return -EINVAL;
0894 }
0895
0896 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
0897 {
0898 return -EINVAL;
0899 }
0900
0901 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
0902 struct kvm_translation *tr)
0903 {
0904 return -EINVAL;
0905 }
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
0918 struct kvm_guest_debug *dbg)
0919 {
0920 int ret = 0;
0921
0922 trace_kvm_set_guest_debug(vcpu, dbg->control);
0923
0924 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
0925 ret = -EINVAL;
0926 goto out;
0927 }
0928
0929 if (dbg->control & KVM_GUESTDBG_ENABLE) {
0930 vcpu->guest_debug = dbg->control;
0931
0932
0933 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
0934 vcpu->arch.external_debug_state = dbg->arch;
0935 }
0936
0937 } else {
0938
0939 vcpu->guest_debug = 0;
0940 }
0941
0942 out:
0943 return ret;
0944 }
0945
0946 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
0947 struct kvm_device_attr *attr)
0948 {
0949 int ret;
0950
0951 switch (attr->group) {
0952 case KVM_ARM_VCPU_PMU_V3_CTRL:
0953 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
0954 break;
0955 case KVM_ARM_VCPU_TIMER_CTRL:
0956 ret = kvm_arm_timer_set_attr(vcpu, attr);
0957 break;
0958 case KVM_ARM_VCPU_PVTIME_CTRL:
0959 ret = kvm_arm_pvtime_set_attr(vcpu, attr);
0960 break;
0961 default:
0962 ret = -ENXIO;
0963 break;
0964 }
0965
0966 return ret;
0967 }
0968
0969 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
0970 struct kvm_device_attr *attr)
0971 {
0972 int ret;
0973
0974 switch (attr->group) {
0975 case KVM_ARM_VCPU_PMU_V3_CTRL:
0976 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
0977 break;
0978 case KVM_ARM_VCPU_TIMER_CTRL:
0979 ret = kvm_arm_timer_get_attr(vcpu, attr);
0980 break;
0981 case KVM_ARM_VCPU_PVTIME_CTRL:
0982 ret = kvm_arm_pvtime_get_attr(vcpu, attr);
0983 break;
0984 default:
0985 ret = -ENXIO;
0986 break;
0987 }
0988
0989 return ret;
0990 }
0991
0992 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
0993 struct kvm_device_attr *attr)
0994 {
0995 int ret;
0996
0997 switch (attr->group) {
0998 case KVM_ARM_VCPU_PMU_V3_CTRL:
0999 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1000 break;
1001 case KVM_ARM_VCPU_TIMER_CTRL:
1002 ret = kvm_arm_timer_has_attr(vcpu, attr);
1003 break;
1004 case KVM_ARM_VCPU_PVTIME_CTRL:
1005 ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1006 break;
1007 default:
1008 ret = -ENXIO;
1009 break;
1010 }
1011
1012 return ret;
1013 }
1014
1015 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1016 struct kvm_arm_copy_mte_tags *copy_tags)
1017 {
1018 gpa_t guest_ipa = copy_tags->guest_ipa;
1019 size_t length = copy_tags->length;
1020 void __user *tags = copy_tags->addr;
1021 gpa_t gfn;
1022 bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1023 int ret = 0;
1024
1025 if (!kvm_has_mte(kvm))
1026 return -EINVAL;
1027
1028 if (copy_tags->reserved[0] || copy_tags->reserved[1])
1029 return -EINVAL;
1030
1031 if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1032 return -EINVAL;
1033
1034 if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1035 return -EINVAL;
1036
1037 gfn = gpa_to_gfn(guest_ipa);
1038
1039 mutex_lock(&kvm->slots_lock);
1040
1041 while (length > 0) {
1042 kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1043 void *maddr;
1044 unsigned long num_tags;
1045 struct page *page;
1046
1047 if (is_error_noslot_pfn(pfn)) {
1048 ret = -EFAULT;
1049 goto out;
1050 }
1051
1052 page = pfn_to_online_page(pfn);
1053 if (!page) {
1054
1055 ret = -EFAULT;
1056 goto out;
1057 }
1058 maddr = page_address(page);
1059
1060 if (!write) {
1061 if (test_bit(PG_mte_tagged, &page->flags))
1062 num_tags = mte_copy_tags_to_user(tags, maddr,
1063 MTE_GRANULES_PER_PAGE);
1064 else
1065
1066 num_tags = MTE_GRANULES_PER_PAGE -
1067 clear_user(tags, MTE_GRANULES_PER_PAGE);
1068 kvm_release_pfn_clean(pfn);
1069 } else {
1070 num_tags = mte_copy_tags_from_user(maddr, tags,
1071 MTE_GRANULES_PER_PAGE);
1072
1073
1074
1075
1076
1077 if (num_tags == MTE_GRANULES_PER_PAGE)
1078 set_bit(PG_mte_tagged, &page->flags);
1079
1080 kvm_release_pfn_dirty(pfn);
1081 }
1082
1083 if (num_tags != MTE_GRANULES_PER_PAGE) {
1084 ret = -EFAULT;
1085 goto out;
1086 }
1087
1088 gfn++;
1089 tags += num_tags;
1090 length -= PAGE_SIZE;
1091 }
1092
1093 out:
1094 mutex_unlock(&kvm->slots_lock);
1095
1096 if (length != copy_tags->length)
1097 return copy_tags->length - length;
1098 return ret;
1099 }