Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
0004  */
0005 
0006 #include <linux/elf.h>
0007 #include <linux/ftrace.h>
0008 #include <linux/kernel.h>
0009 #include <linux/module.h>
0010 #include <linux/sort.h>
0011 
0012 static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
0013                         enum aarch64_insn_register reg)
0014 {
0015     u32 adrp, add;
0016 
0017     adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
0018     add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
0019                        AARCH64_INSN_VARIANT_64BIT,
0020                        AARCH64_INSN_ADSB_ADD);
0021 
0022     return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
0023 }
0024 
0025 struct plt_entry get_plt_entry(u64 dst, void *pc)
0026 {
0027     struct plt_entry plt;
0028     static u32 br;
0029 
0030     if (!br)
0031         br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
0032                          AARCH64_INSN_BRANCH_NOLINK);
0033 
0034     plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
0035     plt.br = cpu_to_le32(br);
0036 
0037     return plt;
0038 }
0039 
0040 bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
0041 {
0042     u64 p, q;
0043 
0044     /*
0045      * Check whether both entries refer to the same target:
0046      * do the cheapest checks first.
0047      * If the 'add' or 'br' opcodes are different, then the target
0048      * cannot be the same.
0049      */
0050     if (a->add != b->add || a->br != b->br)
0051         return false;
0052 
0053     p = ALIGN_DOWN((u64)a, SZ_4K);
0054     q = ALIGN_DOWN((u64)b, SZ_4K);
0055 
0056     /*
0057      * If the 'adrp' opcodes are the same then we just need to check
0058      * that they refer to the same 4k region.
0059      */
0060     if (a->adrp == b->adrp && p == q)
0061         return true;
0062 
0063     return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
0064            (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
0065 }
0066 
0067 static bool in_init(const struct module *mod, void *loc)
0068 {
0069     return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
0070 }
0071 
0072 u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
0073               void *loc, const Elf64_Rela *rela,
0074               Elf64_Sym *sym)
0075 {
0076     struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
0077                               &mod->arch.init;
0078     struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
0079     int i = pltsec->plt_num_entries;
0080     int j = i - 1;
0081     u64 val = sym->st_value + rela->r_addend;
0082 
0083     if (is_forbidden_offset_for_adrp(&plt[i].adrp))
0084         i++;
0085 
0086     plt[i] = get_plt_entry(val, &plt[i]);
0087 
0088     /*
0089      * Check if the entry we just created is a duplicate. Given that the
0090      * relocations are sorted, this will be the last entry we allocated.
0091      * (if one exists).
0092      */
0093     if (j >= 0 && plt_entries_equal(plt + i, plt + j))
0094         return (u64)&plt[j];
0095 
0096     pltsec->plt_num_entries += i - j;
0097     if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
0098         return 0;
0099 
0100     return (u64)&plt[i];
0101 }
0102 
0103 #ifdef CONFIG_ARM64_ERRATUM_843419
0104 u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
0105                 void *loc, u64 val)
0106 {
0107     struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
0108                               &mod->arch.init;
0109     struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
0110     int i = pltsec->plt_num_entries++;
0111     u32 br;
0112     int rd;
0113 
0114     if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
0115         return 0;
0116 
0117     if (is_forbidden_offset_for_adrp(&plt[i].adrp))
0118         i = pltsec->plt_num_entries++;
0119 
0120     /* get the destination register of the ADRP instruction */
0121     rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
0122                       le32_to_cpup((__le32 *)loc));
0123 
0124     br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
0125                      AARCH64_INSN_BRANCH_NOLINK);
0126 
0127     plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
0128     plt[i].br = cpu_to_le32(br);
0129 
0130     return (u64)&plt[i];
0131 }
0132 #endif
0133 
0134 #define cmp_3way(a, b)  ((a) < (b) ? -1 : (a) > (b))
0135 
0136 static int cmp_rela(const void *a, const void *b)
0137 {
0138     const Elf64_Rela *x = a, *y = b;
0139     int i;
0140 
0141     /* sort by type, symbol index and addend */
0142     i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
0143     if (i == 0)
0144         i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
0145     if (i == 0)
0146         i = cmp_3way(x->r_addend, y->r_addend);
0147     return i;
0148 }
0149 
0150 static bool duplicate_rel(const Elf64_Rela *rela, int num)
0151 {
0152     /*
0153      * Entries are sorted by type, symbol index and addend. That means
0154      * that, if a duplicate entry exists, it must be in the preceding
0155      * slot.
0156      */
0157     return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
0158 }
0159 
0160 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
0161                    Elf64_Word dstidx, Elf_Shdr *dstsec)
0162 {
0163     unsigned int ret = 0;
0164     Elf64_Sym *s;
0165     int i;
0166 
0167     for (i = 0; i < num; i++) {
0168         u64 min_align;
0169 
0170         switch (ELF64_R_TYPE(rela[i].r_info)) {
0171         case R_AARCH64_JUMP26:
0172         case R_AARCH64_CALL26:
0173             if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
0174                 break;
0175 
0176             /*
0177              * We only have to consider branch targets that resolve
0178              * to symbols that are defined in a different section.
0179              * This is not simply a heuristic, it is a fundamental
0180              * limitation, since there is no guaranteed way to emit
0181              * PLT entries sufficiently close to the branch if the
0182              * section size exceeds the range of a branch
0183              * instruction. So ignore relocations against defined
0184              * symbols if they live in the same section as the
0185              * relocation target.
0186              */
0187             s = syms + ELF64_R_SYM(rela[i].r_info);
0188             if (s->st_shndx == dstidx)
0189                 break;
0190 
0191             /*
0192              * Jump relocations with non-zero addends against
0193              * undefined symbols are supported by the ELF spec, but
0194              * do not occur in practice (e.g., 'jump n bytes past
0195              * the entry point of undefined function symbol f').
0196              * So we need to support them, but there is no need to
0197              * take them into consideration when trying to optimize
0198              * this code. So let's only check for duplicates when
0199              * the addend is zero: this allows us to record the PLT
0200              * entry address in the symbol table itself, rather than
0201              * having to search the list for duplicates each time we
0202              * emit one.
0203              */
0204             if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
0205                 ret++;
0206             break;
0207         case R_AARCH64_ADR_PREL_PG_HI21_NC:
0208         case R_AARCH64_ADR_PREL_PG_HI21:
0209             if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
0210                 !cpus_have_const_cap(ARM64_WORKAROUND_843419))
0211                 break;
0212 
0213             /*
0214              * Determine the minimal safe alignment for this ADRP
0215              * instruction: the section alignment at which it is
0216              * guaranteed not to appear at a vulnerable offset.
0217              *
0218              * This comes down to finding the least significant zero
0219              * bit in bits [11:3] of the section offset, and
0220              * increasing the section's alignment so that the
0221              * resulting address of this instruction is guaranteed
0222              * to equal the offset in that particular bit (as well
0223              * as all less significant bits). This ensures that the
0224              * address modulo 4 KB != 0xfff8 or 0xfffc (which would
0225              * have all ones in bits [11:3])
0226              */
0227             min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
0228 
0229             /*
0230              * Allocate veneer space for each ADRP that may appear
0231              * at a vulnerable offset nonetheless. At relocation
0232              * time, some of these will remain unused since some
0233              * ADRP instructions can be patched to ADR instructions
0234              * instead.
0235              */
0236             if (min_align > SZ_4K)
0237                 ret++;
0238             else
0239                 dstsec->sh_addralign = max(dstsec->sh_addralign,
0240                                min_align);
0241             break;
0242         }
0243     }
0244 
0245     if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
0246         cpus_have_const_cap(ARM64_WORKAROUND_843419))
0247         /*
0248          * Add some slack so we can skip PLT slots that may trigger
0249          * the erratum due to the placement of the ADRP instruction.
0250          */
0251         ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
0252 
0253     return ret;
0254 }
0255 
0256 static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
0257                   Elf64_Word dstidx)
0258 {
0259 
0260     Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
0261 
0262     if (s->st_shndx == dstidx)
0263         return false;
0264 
0265     return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
0266            ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
0267 }
0268 
0269 /* Group branch PLT relas at the front end of the array. */
0270 static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
0271                       int numrels, Elf64_Word dstidx)
0272 {
0273     int i = 0, j = numrels - 1;
0274 
0275     if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
0276         return 0;
0277 
0278     while (i < j) {
0279         if (branch_rela_needs_plt(syms, &rela[i], dstidx))
0280             i++;
0281         else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
0282             swap(rela[i], rela[j]);
0283         else
0284             j--;
0285     }
0286 
0287     return i;
0288 }
0289 
0290 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
0291                   char *secstrings, struct module *mod)
0292 {
0293     unsigned long core_plts = 0;
0294     unsigned long init_plts = 0;
0295     Elf64_Sym *syms = NULL;
0296     Elf_Shdr *pltsec, *tramp = NULL;
0297     int i;
0298 
0299     /*
0300      * Find the empty .plt section so we can expand it to store the PLT
0301      * entries. Record the symtab address as well.
0302      */
0303     for (i = 0; i < ehdr->e_shnum; i++) {
0304         if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
0305             mod->arch.core.plt_shndx = i;
0306         else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
0307             mod->arch.init.plt_shndx = i;
0308         else if (!strcmp(secstrings + sechdrs[i].sh_name,
0309                  ".text.ftrace_trampoline"))
0310             tramp = sechdrs + i;
0311         else if (sechdrs[i].sh_type == SHT_SYMTAB)
0312             syms = (Elf64_Sym *)sechdrs[i].sh_addr;
0313     }
0314 
0315     if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
0316         pr_err("%s: module PLT section(s) missing\n", mod->name);
0317         return -ENOEXEC;
0318     }
0319     if (!syms) {
0320         pr_err("%s: module symtab section missing\n", mod->name);
0321         return -ENOEXEC;
0322     }
0323 
0324     for (i = 0; i < ehdr->e_shnum; i++) {
0325         Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
0326         int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
0327         Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
0328 
0329         if (sechdrs[i].sh_type != SHT_RELA)
0330             continue;
0331 
0332         /* ignore relocations that operate on non-exec sections */
0333         if (!(dstsec->sh_flags & SHF_EXECINSTR))
0334             continue;
0335 
0336         /*
0337          * sort branch relocations requiring a PLT by type, symbol index
0338          * and addend
0339          */
0340         nents = partition_branch_plt_relas(syms, rels, numrels,
0341                            sechdrs[i].sh_info);
0342         if (nents)
0343             sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
0344 
0345         if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
0346             core_plts += count_plts(syms, rels, numrels,
0347                         sechdrs[i].sh_info, dstsec);
0348         else
0349             init_plts += count_plts(syms, rels, numrels,
0350                         sechdrs[i].sh_info, dstsec);
0351     }
0352 
0353     pltsec = sechdrs + mod->arch.core.plt_shndx;
0354     pltsec->sh_type = SHT_NOBITS;
0355     pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
0356     pltsec->sh_addralign = L1_CACHE_BYTES;
0357     pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
0358     mod->arch.core.plt_num_entries = 0;
0359     mod->arch.core.plt_max_entries = core_plts;
0360 
0361     pltsec = sechdrs + mod->arch.init.plt_shndx;
0362     pltsec->sh_type = SHT_NOBITS;
0363     pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
0364     pltsec->sh_addralign = L1_CACHE_BYTES;
0365     pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
0366     mod->arch.init.plt_num_entries = 0;
0367     mod->arch.init.plt_max_entries = init_plts;
0368 
0369     if (tramp) {
0370         tramp->sh_type = SHT_NOBITS;
0371         tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
0372         tramp->sh_addralign = __alignof__(struct plt_entry);
0373         tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
0374     }
0375 
0376     return 0;
0377 }