Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Contains CPU feature definitions
0004  *
0005  * Copyright (C) 2015 ARM Ltd.
0006  *
0007  * A note for the weary kernel hacker: the code here is confusing and hard to
0008  * follow! That's partly because it's solving a nasty problem, but also because
0009  * there's a little bit of over-abstraction that tends to obscure what's going
0010  * on behind a maze of helper functions and macros.
0011  *
0012  * The basic problem is that hardware folks have started gluing together CPUs
0013  * with distinct architectural features; in some cases even creating SoCs where
0014  * user-visible instructions are available only on a subset of the available
0015  * cores. We try to address this by snapshotting the feature registers of the
0016  * boot CPU and comparing these with the feature registers of each secondary
0017  * CPU when bringing them up. If there is a mismatch, then we update the
0018  * snapshot state to indicate the lowest-common denominator of the feature,
0019  * known as the "safe" value. This snapshot state can be queried to view the
0020  * "sanitised" value of a feature register.
0021  *
0022  * The sanitised register values are used to decide which capabilities we
0023  * have in the system. These may be in the form of traditional "hwcaps"
0024  * advertised to userspace or internal "cpucaps" which are used to configure
0025  * things like alternative patching and static keys. While a feature mismatch
0026  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
0027  * may prevent a CPU from being onlined at all.
0028  *
0029  * Some implementation details worth remembering:
0030  *
0031  * - Mismatched features are *always* sanitised to a "safe" value, which
0032  *   usually indicates that the feature is not supported.
0033  *
0034  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
0035  *   warning when onlining an offending CPU and the kernel will be tainted
0036  *   with TAINT_CPU_OUT_OF_SPEC.
0037  *
0038  * - Features marked as FTR_VISIBLE have their sanitised value visible to
0039  *   userspace. FTR_VISIBLE features in registers that are only visible
0040  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
0041  *   onlining of CPUs cannot lead to features disappearing at runtime.
0042  *
0043  * - A "feature" is typically a 4-bit register field. A "capability" is the
0044  *   high-level description derived from the sanitised field value.
0045  *
0046  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
0047  *   scheme for fields in ID registers") to understand when feature fields
0048  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
0049  *
0050  * - KVM exposes its own view of the feature registers to guest operating
0051  *   systems regardless of FTR_VISIBLE. This is typically driven from the
0052  *   sanitised register values to allow virtual CPUs to be migrated between
0053  *   arbitrary physical CPUs, but some features not present on the host are
0054  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
0055  *   details.
0056  *
0057  * - If the arm64_ftr_bits[] for a register has a missing field, then this
0058  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
0059  *   This is stronger than FTR_HIDDEN and can be used to hide features from
0060  *   KVM guests.
0061  */
0062 
0063 #define pr_fmt(fmt) "CPU features: " fmt
0064 
0065 #include <linux/bsearch.h>
0066 #include <linux/cpumask.h>
0067 #include <linux/crash_dump.h>
0068 #include <linux/sort.h>
0069 #include <linux/stop_machine.h>
0070 #include <linux/sysfs.h>
0071 #include <linux/types.h>
0072 #include <linux/minmax.h>
0073 #include <linux/mm.h>
0074 #include <linux/cpu.h>
0075 #include <linux/kasan.h>
0076 #include <linux/percpu.h>
0077 
0078 #include <asm/cpu.h>
0079 #include <asm/cpufeature.h>
0080 #include <asm/cpu_ops.h>
0081 #include <asm/fpsimd.h>
0082 #include <asm/hwcap.h>
0083 #include <asm/insn.h>
0084 #include <asm/kvm_host.h>
0085 #include <asm/mmu_context.h>
0086 #include <asm/mte.h>
0087 #include <asm/processor.h>
0088 #include <asm/smp.h>
0089 #include <asm/sysreg.h>
0090 #include <asm/traps.h>
0091 #include <asm/vectors.h>
0092 #include <asm/virt.h>
0093 
0094 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
0095 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
0096 
0097 #ifdef CONFIG_COMPAT
0098 #define COMPAT_ELF_HWCAP_DEFAULT    \
0099                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
0100                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
0101                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
0102                  COMPAT_HWCAP_LPAE)
0103 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
0104 unsigned int compat_elf_hwcap2 __read_mostly;
0105 #endif
0106 
0107 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
0108 EXPORT_SYMBOL(cpu_hwcaps);
0109 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
0110 
0111 /* Need also bit for ARM64_CB_PATCH */
0112 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
0113 
0114 bool arm64_use_ng_mappings = false;
0115 EXPORT_SYMBOL(arm64_use_ng_mappings);
0116 
0117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
0118 
0119 /*
0120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
0121  * support it?
0122  */
0123 static bool __read_mostly allow_mismatched_32bit_el0;
0124 
0125 /*
0126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
0127  * seen at least one CPU capable of 32-bit EL0.
0128  */
0129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
0130 
0131 /*
0132  * Mask of CPUs supporting 32-bit EL0.
0133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
0134  */
0135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
0136 
0137 /*
0138  * Flag to indicate if we have computed the system wide
0139  * capabilities based on the boot time active CPUs. This
0140  * will be used to determine if a new booting CPU should
0141  * go through the verification process to make sure that it
0142  * supports the system capabilities, without using a hotplug
0143  * notifier. This is also used to decide if we could use
0144  * the fast path for checking constant CPU caps.
0145  */
0146 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
0147 EXPORT_SYMBOL(arm64_const_caps_ready);
0148 static inline void finalize_system_capabilities(void)
0149 {
0150     static_branch_enable(&arm64_const_caps_ready);
0151 }
0152 
0153 void dump_cpu_features(void)
0154 {
0155     /* file-wide pr_fmt adds "CPU features: " prefix */
0156     pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
0157 }
0158 
0159 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
0160 EXPORT_SYMBOL(cpu_hwcap_keys);
0161 
0162 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
0163     {                       \
0164         .sign = SIGNED,             \
0165         .visible = VISIBLE,         \
0166         .strict = STRICT,           \
0167         .type = TYPE,               \
0168         .shift = SHIFT,             \
0169         .width = WIDTH,             \
0170         .safe_val = SAFE_VAL,           \
0171     }
0172 
0173 /* Define a feature with unsigned values */
0174 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
0175     __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
0176 
0177 /* Define a feature with a signed value */
0178 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
0179     __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
0180 
0181 #define ARM64_FTR_END                   \
0182     {                       \
0183         .width = 0,             \
0184     }
0185 
0186 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
0187 
0188 static bool __system_matches_cap(unsigned int n);
0189 
0190 /*
0191  * NOTE: Any changes to the visibility of features should be kept in
0192  * sync with the documentation of the CPU feature register ABI.
0193  */
0194 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
0195     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
0196     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
0197     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
0198     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
0199     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
0200     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
0201     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
0202     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
0203     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
0204     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
0205     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
0206     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
0207     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
0208     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
0209     ARM64_FTR_END,
0210 };
0211 
0212 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
0213     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
0214     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
0215     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
0216     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
0217     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
0218     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
0219     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
0220                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
0221     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
0222                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
0223     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
0224     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
0225     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
0226     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
0227                FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
0228     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
0229                FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
0230     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
0231     ARM64_FTR_END,
0232 };
0233 
0234 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
0235     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
0236     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
0237                FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
0238     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
0239                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
0240     ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
0241     ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
0242     ARM64_FTR_END,
0243 };
0244 
0245 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
0246     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
0247     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
0248     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
0249     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
0250     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
0251     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
0252     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
0253                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
0254     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
0255     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
0256     S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
0257     S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
0258     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
0259     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
0260     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
0261     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
0262     ARM64_FTR_END,
0263 };
0264 
0265 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
0266     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
0267                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SME_SHIFT, 4, 0),
0268     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
0269     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
0270     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
0271                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
0272     ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
0273     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
0274                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
0275     ARM64_FTR_END,
0276 };
0277 
0278 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
0279     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
0280                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
0281     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
0282                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
0283     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
0284                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
0285     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
0286                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
0287     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
0288                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
0289     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
0290                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
0291     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
0292                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
0293     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
0294                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
0295     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
0296                FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
0297     ARM64_FTR_END,
0298 };
0299 
0300 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
0301     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
0302                FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
0303     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
0304                FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
0305     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
0306                FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
0307     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
0308                FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
0309     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
0310                FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
0311     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
0312                FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
0313     ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
0314                FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
0315     ARM64_FTR_END,
0316 };
0317 
0318 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
0319     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
0320     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
0321     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
0322     /*
0323      * Page size not being supported at Stage-2 is not fatal. You
0324      * just give up KVM if PAGE_SIZE isn't supported there. Go fix
0325      * your favourite nesting hypervisor.
0326      *
0327      * There is a small corner case where the hypervisor explicitly
0328      * advertises a given granule size at Stage-2 (value 2) on some
0329      * vCPUs, and uses the fallback to Stage-1 (value 0) for other
0330      * vCPUs. Although this is not forbidden by the architecture, it
0331      * indicates that the hypervisor is being silly (or buggy).
0332      *
0333      * We make no effort to cope with this and pretend that if these
0334      * fields are inconsistent across vCPUs, then it isn't worth
0335      * trying to bring KVM up.
0336      */
0337     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
0338     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
0339     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
0340     /*
0341      * We already refuse to boot CPUs that don't support our configured
0342      * page size, so we can only detect mismatches for a page size other
0343      * than the one we're currently using. Unfortunately, SoCs like this
0344      * exist in the wild so, even though we don't like it, we'll have to go
0345      * along with it and treat them as non-strict.
0346      */
0347     S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
0348     S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
0349     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
0350 
0351     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
0352     /* Linux shouldn't care about secure memory */
0353     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
0354     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
0355     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
0356     /*
0357      * Differing PARange is fine as long as all peripherals and memory are mapped
0358      * within the minimum PARange of all CPUs
0359      */
0360     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
0361     ARM64_FTR_END,
0362 };
0363 
0364 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
0365     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TIDCP1_SHIFT, 4, 0),
0366     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_AFP_SHIFT, 4, 0),
0367     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
0368     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
0369     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
0370     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
0371     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
0372     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
0373     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
0374     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
0375     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
0376     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
0377     ARM64_FTR_END,
0378 };
0379 
0380 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
0381     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
0382     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
0383     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
0384     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
0385     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
0386     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
0387     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
0388     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
0389     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
0390     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
0391     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
0392     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
0393     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
0394     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
0395     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
0396     ARM64_FTR_END,
0397 };
0398 
0399 static const struct arm64_ftr_bits ftr_ctr[] = {
0400     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
0401     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
0402     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
0403     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
0404     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
0405     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
0406     /*
0407      * Linux can handle differing I-cache policies. Userspace JITs will
0408      * make use of *minLine.
0409      * If we have differing I-cache policies, report it as the weakest - VIPT.
0410      */
0411     ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),    /* L1Ip */
0412     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
0413     ARM64_FTR_END,
0414 };
0415 
0416 static struct arm64_ftr_override __ro_after_init no_override = { };
0417 
0418 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
0419     .name       = "SYS_CTR_EL0",
0420     .ftr_bits   = ftr_ctr,
0421     .override   = &no_override,
0422 };
0423 
0424 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
0425     S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
0426     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
0427     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
0428     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
0429     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
0430     S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
0431     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
0432     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
0433     ARM64_FTR_END,
0434 };
0435 
0436 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
0437     S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
0438     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
0439     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
0440     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
0441     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
0442     /*
0443      * We can instantiate multiple PMU instances with different levels
0444      * of support.
0445      */
0446     S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
0447     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
0448     ARM64_FTR_END,
0449 };
0450 
0451 static const struct arm64_ftr_bits ftr_mvfr2[] = {
0452     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
0453     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
0454     ARM64_FTR_END,
0455 };
0456 
0457 static const struct arm64_ftr_bits ftr_dczid[] = {
0458     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
0459     ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
0460     ARM64_FTR_END,
0461 };
0462 
0463 static const struct arm64_ftr_bits ftr_gmid[] = {
0464     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
0465     ARM64_FTR_END,
0466 };
0467 
0468 static const struct arm64_ftr_bits ftr_id_isar0[] = {
0469     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
0470     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
0471     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
0472     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
0473     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
0474     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
0475     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
0476     ARM64_FTR_END,
0477 };
0478 
0479 static const struct arm64_ftr_bits ftr_id_isar5[] = {
0480     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
0481     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
0482     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
0483     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
0484     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
0485     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
0486     ARM64_FTR_END,
0487 };
0488 
0489 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
0490     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
0491     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
0492     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
0493     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
0494     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
0495     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
0496     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
0497 
0498     /*
0499      * SpecSEI = 1 indicates that the PE might generate an SError on an
0500      * external abort on speculative read. It is safe to assume that an
0501      * SError might be generated than it will not be. Hence it has been
0502      * classified as FTR_HIGHER_SAFE.
0503      */
0504     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
0505     ARM64_FTR_END,
0506 };
0507 
0508 static const struct arm64_ftr_bits ftr_id_isar4[] = {
0509     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
0510     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
0511     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
0512     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
0513     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
0514     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
0515     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
0516     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
0517     ARM64_FTR_END,
0518 };
0519 
0520 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
0521     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
0522     ARM64_FTR_END,
0523 };
0524 
0525 static const struct arm64_ftr_bits ftr_id_isar6[] = {
0526     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
0527     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
0528     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
0529     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
0530     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
0531     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
0532     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
0533     ARM64_FTR_END,
0534 };
0535 
0536 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
0537     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
0538     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
0539     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
0540     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
0541     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
0542     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
0543     ARM64_FTR_END,
0544 };
0545 
0546 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
0547     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
0548     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
0549     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
0550     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
0551     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
0552     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
0553     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
0554     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
0555     ARM64_FTR_END,
0556 };
0557 
0558 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
0559     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
0560     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
0561     ARM64_FTR_END,
0562 };
0563 
0564 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
0565     /* [31:28] TraceFilt */
0566     S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_PERFMON_SHIFT, 4, 0),
0567     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
0568     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
0569     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
0570     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
0571     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
0572     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
0573     ARM64_FTR_END,
0574 };
0575 
0576 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
0577     S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
0578     ARM64_FTR_END,
0579 };
0580 
0581 static const struct arm64_ftr_bits ftr_zcr[] = {
0582     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
0583         ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0),   /* LEN */
0584     ARM64_FTR_END,
0585 };
0586 
0587 static const struct arm64_ftr_bits ftr_smcr[] = {
0588     ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
0589         SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0), /* LEN */
0590     ARM64_FTR_END,
0591 };
0592 
0593 /*
0594  * Common ftr bits for a 32bit register with all hidden, strict
0595  * attributes, with 4bit feature fields and a default safe value of
0596  * 0. Covers the following 32bit registers:
0597  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
0598  */
0599 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
0600     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
0601     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
0602     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
0603     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
0604     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
0605     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
0606     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
0607     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
0608     ARM64_FTR_END,
0609 };
0610 
0611 /* Table for a single 32bit feature value */
0612 static const struct arm64_ftr_bits ftr_single32[] = {
0613     ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
0614     ARM64_FTR_END,
0615 };
0616 
0617 static const struct arm64_ftr_bits ftr_raz[] = {
0618     ARM64_FTR_END,
0619 };
0620 
0621 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {  \
0622         .sys_id = id,                   \
0623         .reg =  &(struct arm64_ftr_reg){        \
0624             .name = id_str,             \
0625             .override = (ovr),          \
0626             .ftr_bits = &((table)[0]),      \
0627     }}
0628 
0629 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)  \
0630     __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
0631 
0632 #define ARM64_FTR_REG(id, table)        \
0633     __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
0634 
0635 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
0636 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
0637 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
0638 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
0639 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
0640 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
0641 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
0642 
0643 static const struct __ftr_reg_entry {
0644     u32         sys_id;
0645     struct arm64_ftr_reg    *reg;
0646 } arm64_ftr_regs[] = {
0647 
0648     /* Op1 = 0, CRn = 0, CRm = 1 */
0649     ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
0650     ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
0651     ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
0652     ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
0653     ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
0654     ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
0655     ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
0656 
0657     /* Op1 = 0, CRn = 0, CRm = 2 */
0658     ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
0659     ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
0660     ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
0661     ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
0662     ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
0663     ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
0664     ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
0665     ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
0666 
0667     /* Op1 = 0, CRn = 0, CRm = 3 */
0668     ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
0669     ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
0670     ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
0671     ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
0672     ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
0673     ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
0674 
0675     /* Op1 = 0, CRn = 0, CRm = 4 */
0676     ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
0677                    &id_aa64pfr0_override),
0678     ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
0679                    &id_aa64pfr1_override),
0680     ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
0681                    &id_aa64zfr0_override),
0682     ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
0683                    &id_aa64smfr0_override),
0684 
0685     /* Op1 = 0, CRn = 0, CRm = 5 */
0686     ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
0687     ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
0688 
0689     /* Op1 = 0, CRn = 0, CRm = 6 */
0690     ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
0691     ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
0692                    &id_aa64isar1_override),
0693     ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
0694                    &id_aa64isar2_override),
0695 
0696     /* Op1 = 0, CRn = 0, CRm = 7 */
0697     ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
0698     ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
0699                    &id_aa64mmfr1_override),
0700     ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
0701 
0702     /* Op1 = 0, CRn = 1, CRm = 2 */
0703     ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
0704     ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
0705 
0706     /* Op1 = 1, CRn = 0, CRm = 0 */
0707     ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
0708 
0709     /* Op1 = 3, CRn = 0, CRm = 0 */
0710     { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
0711     ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
0712 
0713     /* Op1 = 3, CRn = 14, CRm = 0 */
0714     ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
0715 };
0716 
0717 static int search_cmp_ftr_reg(const void *id, const void *regp)
0718 {
0719     return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
0720 }
0721 
0722 /*
0723  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
0724  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
0725  * ascending order of sys_id, we use binary search to find a matching
0726  * entry.
0727  *
0728  * returns - Upon success,  matching ftr_reg entry for id.
0729  *         - NULL on failure. It is upto the caller to decide
0730  *       the impact of a failure.
0731  */
0732 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
0733 {
0734     const struct __ftr_reg_entry *ret;
0735 
0736     ret = bsearch((const void *)(unsigned long)sys_id,
0737             arm64_ftr_regs,
0738             ARRAY_SIZE(arm64_ftr_regs),
0739             sizeof(arm64_ftr_regs[0]),
0740             search_cmp_ftr_reg);
0741     if (ret)
0742         return ret->reg;
0743     return NULL;
0744 }
0745 
0746 /*
0747  * get_arm64_ftr_reg - Looks up a feature register entry using
0748  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
0749  *
0750  * returns - Upon success,  matching ftr_reg entry for id.
0751  *         - NULL on failure but with an WARN_ON().
0752  */
0753 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
0754 {
0755     struct arm64_ftr_reg *reg;
0756 
0757     reg = get_arm64_ftr_reg_nowarn(sys_id);
0758 
0759     /*
0760      * Requesting a non-existent register search is an error. Warn
0761      * and let the caller handle it.
0762      */
0763     WARN_ON(!reg);
0764     return reg;
0765 }
0766 
0767 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
0768                    s64 ftr_val)
0769 {
0770     u64 mask = arm64_ftr_mask(ftrp);
0771 
0772     reg &= ~mask;
0773     reg |= (ftr_val << ftrp->shift) & mask;
0774     return reg;
0775 }
0776 
0777 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
0778                 s64 cur)
0779 {
0780     s64 ret = 0;
0781 
0782     switch (ftrp->type) {
0783     case FTR_EXACT:
0784         ret = ftrp->safe_val;
0785         break;
0786     case FTR_LOWER_SAFE:
0787         ret = min(new, cur);
0788         break;
0789     case FTR_HIGHER_OR_ZERO_SAFE:
0790         if (!cur || !new)
0791             break;
0792         fallthrough;
0793     case FTR_HIGHER_SAFE:
0794         ret = max(new, cur);
0795         break;
0796     default:
0797         BUG();
0798     }
0799 
0800     return ret;
0801 }
0802 
0803 static void __init sort_ftr_regs(void)
0804 {
0805     unsigned int i;
0806 
0807     for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
0808         const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
0809         const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
0810         unsigned int j = 0;
0811 
0812         /*
0813          * Features here must be sorted in descending order with respect
0814          * to their shift values and should not overlap with each other.
0815          */
0816         for (; ftr_bits->width != 0; ftr_bits++, j++) {
0817             unsigned int width = ftr_reg->ftr_bits[j].width;
0818             unsigned int shift = ftr_reg->ftr_bits[j].shift;
0819             unsigned int prev_shift;
0820 
0821             WARN((shift  + width) > 64,
0822                 "%s has invalid feature at shift %d\n",
0823                 ftr_reg->name, shift);
0824 
0825             /*
0826              * Skip the first feature. There is nothing to
0827              * compare against for now.
0828              */
0829             if (j == 0)
0830                 continue;
0831 
0832             prev_shift = ftr_reg->ftr_bits[j - 1].shift;
0833             WARN((shift + width) > prev_shift,
0834                 "%s has feature overlap at shift %d\n",
0835                 ftr_reg->name, shift);
0836         }
0837 
0838         /*
0839          * Skip the first register. There is nothing to
0840          * compare against for now.
0841          */
0842         if (i == 0)
0843             continue;
0844         /*
0845          * Registers here must be sorted in ascending order with respect
0846          * to sys_id for subsequent binary search in get_arm64_ftr_reg()
0847          * to work correctly.
0848          */
0849         BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
0850     }
0851 }
0852 
0853 /*
0854  * Initialise the CPU feature register from Boot CPU values.
0855  * Also initiliases the strict_mask for the register.
0856  * Any bits that are not covered by an arm64_ftr_bits entry are considered
0857  * RES0 for the system-wide value, and must strictly match.
0858  */
0859 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
0860 {
0861     u64 val = 0;
0862     u64 strict_mask = ~0x0ULL;
0863     u64 user_mask = 0;
0864     u64 valid_mask = 0;
0865 
0866     const struct arm64_ftr_bits *ftrp;
0867     struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
0868 
0869     if (!reg)
0870         return;
0871 
0872     for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
0873         u64 ftr_mask = arm64_ftr_mask(ftrp);
0874         s64 ftr_new = arm64_ftr_value(ftrp, new);
0875         s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
0876 
0877         if ((ftr_mask & reg->override->mask) == ftr_mask) {
0878             s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
0879             char *str = NULL;
0880 
0881             if (ftr_ovr != tmp) {
0882                 /* Unsafe, remove the override */
0883                 reg->override->mask &= ~ftr_mask;
0884                 reg->override->val &= ~ftr_mask;
0885                 tmp = ftr_ovr;
0886                 str = "ignoring override";
0887             } else if (ftr_new != tmp) {
0888                 /* Override was valid */
0889                 ftr_new = tmp;
0890                 str = "forced";
0891             } else if (ftr_ovr == tmp) {
0892                 /* Override was the safe value */
0893                 str = "already set";
0894             }
0895 
0896             if (str)
0897                 pr_warn("%s[%d:%d]: %s to %llx\n",
0898                     reg->name,
0899                     ftrp->shift + ftrp->width - 1,
0900                     ftrp->shift, str, tmp);
0901         } else if ((ftr_mask & reg->override->val) == ftr_mask) {
0902             reg->override->val &= ~ftr_mask;
0903             pr_warn("%s[%d:%d]: impossible override, ignored\n",
0904                 reg->name,
0905                 ftrp->shift + ftrp->width - 1,
0906                 ftrp->shift);
0907         }
0908 
0909         val = arm64_ftr_set_value(ftrp, val, ftr_new);
0910 
0911         valid_mask |= ftr_mask;
0912         if (!ftrp->strict)
0913             strict_mask &= ~ftr_mask;
0914         if (ftrp->visible)
0915             user_mask |= ftr_mask;
0916         else
0917             reg->user_val = arm64_ftr_set_value(ftrp,
0918                                 reg->user_val,
0919                                 ftrp->safe_val);
0920     }
0921 
0922     val &= valid_mask;
0923 
0924     reg->sys_val = val;
0925     reg->strict_mask = strict_mask;
0926     reg->user_mask = user_mask;
0927 }
0928 
0929 extern const struct arm64_cpu_capabilities arm64_errata[];
0930 static const struct arm64_cpu_capabilities arm64_features[];
0931 
0932 static void __init
0933 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
0934 {
0935     for (; caps->matches; caps++) {
0936         if (WARN(caps->capability >= ARM64_NCAPS,
0937             "Invalid capability %d\n", caps->capability))
0938             continue;
0939         if (WARN(cpu_hwcaps_ptrs[caps->capability],
0940             "Duplicate entry for capability %d\n",
0941             caps->capability))
0942             continue;
0943         cpu_hwcaps_ptrs[caps->capability] = caps;
0944     }
0945 }
0946 
0947 static void __init init_cpu_hwcaps_indirect_list(void)
0948 {
0949     init_cpu_hwcaps_indirect_list_from_array(arm64_features);
0950     init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
0951 }
0952 
0953 static void __init setup_boot_cpu_capabilities(void);
0954 
0955 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
0956 {
0957     init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
0958     init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
0959     init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
0960     init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
0961     init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
0962     init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
0963     init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
0964     init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
0965     init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
0966     init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
0967     init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
0968     init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
0969     init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
0970     init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
0971     init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
0972     init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
0973     init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
0974     init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
0975     init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
0976     init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
0977     init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
0978 }
0979 
0980 void __init init_cpu_features(struct cpuinfo_arm64 *info)
0981 {
0982     /* Before we start using the tables, make sure it is sorted */
0983     sort_ftr_regs();
0984 
0985     init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
0986     init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
0987     init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
0988     init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
0989     init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
0990     init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
0991     init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
0992     init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
0993     init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
0994     init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
0995     init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
0996     init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
0997     init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
0998     init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
0999     init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1000 
1001     if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1002         init_32bit_cpu_features(&info->aarch32);
1003 
1004     if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1005         id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1006         info->reg_zcr = read_zcr_features();
1007         init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
1008         vec_init_vq_map(ARM64_VEC_SVE);
1009     }
1010 
1011     if (IS_ENABLED(CONFIG_ARM64_SME) &&
1012         id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1013         info->reg_smcr = read_smcr_features();
1014         /*
1015          * We mask out SMPS since even if the hardware
1016          * supports priorities the kernel does not at present
1017          * and we block access to them.
1018          */
1019         info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1020         init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1021         vec_init_vq_map(ARM64_VEC_SME);
1022     }
1023 
1024     if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1025         init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1026 
1027     /*
1028      * Initialize the indirect array of CPU hwcaps capabilities pointers
1029      * before we handle the boot CPU below.
1030      */
1031     init_cpu_hwcaps_indirect_list();
1032 
1033     /*
1034      * Detect and enable early CPU capabilities based on the boot CPU,
1035      * after we have initialised the CPU feature infrastructure.
1036      */
1037     setup_boot_cpu_capabilities();
1038 }
1039 
1040 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1041 {
1042     const struct arm64_ftr_bits *ftrp;
1043 
1044     for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1045         s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1046         s64 ftr_new = arm64_ftr_value(ftrp, new);
1047 
1048         if (ftr_cur == ftr_new)
1049             continue;
1050         /* Find a safe value */
1051         ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1052         reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1053     }
1054 
1055 }
1056 
1057 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1058 {
1059     struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1060 
1061     if (!regp)
1062         return 0;
1063 
1064     update_cpu_ftr_reg(regp, val);
1065     if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1066         return 0;
1067     pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1068             regp->name, boot, cpu, val);
1069     return 1;
1070 }
1071 
1072 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1073 {
1074     const struct arm64_ftr_bits *ftrp;
1075     struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1076 
1077     if (!regp)
1078         return;
1079 
1080     for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1081         if (ftrp->shift == field) {
1082             regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1083             break;
1084         }
1085     }
1086 
1087     /* Bogus field? */
1088     WARN_ON(!ftrp->width);
1089 }
1090 
1091 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1092                      struct cpuinfo_arm64 *boot)
1093 {
1094     static bool boot_cpu_32bit_regs_overridden = false;
1095 
1096     if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1097         return;
1098 
1099     if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1100         return;
1101 
1102     boot->aarch32 = info->aarch32;
1103     init_32bit_cpu_features(&boot->aarch32);
1104     boot_cpu_32bit_regs_overridden = true;
1105 }
1106 
1107 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1108                      struct cpuinfo_32bit *boot)
1109 {
1110     int taint = 0;
1111     u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1112 
1113     /*
1114      * If we don't have AArch32 at EL1, then relax the strictness of
1115      * EL1-dependent register fields to avoid spurious sanity check fails.
1116      */
1117     if (!id_aa64pfr0_32bit_el1(pfr0)) {
1118         relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
1119         relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
1120         relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1121         relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1122         relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1123         relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1124     }
1125 
1126     taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1127                       info->reg_id_dfr0, boot->reg_id_dfr0);
1128     taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1129                       info->reg_id_dfr1, boot->reg_id_dfr1);
1130     taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1131                       info->reg_id_isar0, boot->reg_id_isar0);
1132     taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1133                       info->reg_id_isar1, boot->reg_id_isar1);
1134     taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1135                       info->reg_id_isar2, boot->reg_id_isar2);
1136     taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1137                       info->reg_id_isar3, boot->reg_id_isar3);
1138     taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1139                       info->reg_id_isar4, boot->reg_id_isar4);
1140     taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1141                       info->reg_id_isar5, boot->reg_id_isar5);
1142     taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1143                       info->reg_id_isar6, boot->reg_id_isar6);
1144 
1145     /*
1146      * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1147      * ACTLR formats could differ across CPUs and therefore would have to
1148      * be trapped for virtualization anyway.
1149      */
1150     taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1151                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
1152     taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1153                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
1154     taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1155                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
1156     taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1157                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
1158     taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1159                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
1160     taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1161                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
1162     taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1163                       info->reg_id_pfr0, boot->reg_id_pfr0);
1164     taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1165                       info->reg_id_pfr1, boot->reg_id_pfr1);
1166     taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1167                       info->reg_id_pfr2, boot->reg_id_pfr2);
1168     taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1169                       info->reg_mvfr0, boot->reg_mvfr0);
1170     taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1171                       info->reg_mvfr1, boot->reg_mvfr1);
1172     taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1173                       info->reg_mvfr2, boot->reg_mvfr2);
1174 
1175     return taint;
1176 }
1177 
1178 /*
1179  * Update system wide CPU feature registers with the values from a
1180  * non-boot CPU. Also performs SANITY checks to make sure that there
1181  * aren't any insane variations from that of the boot CPU.
1182  */
1183 void update_cpu_features(int cpu,
1184              struct cpuinfo_arm64 *info,
1185              struct cpuinfo_arm64 *boot)
1186 {
1187     int taint = 0;
1188 
1189     /*
1190      * The kernel can handle differing I-cache policies, but otherwise
1191      * caches should look identical. Userspace JITs will make use of
1192      * *minLine.
1193      */
1194     taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1195                       info->reg_ctr, boot->reg_ctr);
1196 
1197     /*
1198      * Userspace may perform DC ZVA instructions. Mismatched block sizes
1199      * could result in too much or too little memory being zeroed if a
1200      * process is preempted and migrated between CPUs.
1201      */
1202     taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1203                       info->reg_dczid, boot->reg_dczid);
1204 
1205     /* If different, timekeeping will be broken (especially with KVM) */
1206     taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1207                       info->reg_cntfrq, boot->reg_cntfrq);
1208 
1209     /*
1210      * The kernel uses self-hosted debug features and expects CPUs to
1211      * support identical debug features. We presently need CTX_CMPs, WRPs,
1212      * and BRPs to be identical.
1213      * ID_AA64DFR1 is currently RES0.
1214      */
1215     taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1216                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1217     taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1218                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1219     /*
1220      * Even in big.LITTLE, processors should be identical instruction-set
1221      * wise.
1222      */
1223     taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1224                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1225     taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1226                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1227     taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1228                       info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1229 
1230     /*
1231      * Differing PARange support is fine as long as all peripherals and
1232      * memory are mapped within the minimum PARange of all CPUs.
1233      * Linux should not care about secure memory.
1234      */
1235     taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1236                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1237     taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1238                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1239     taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1240                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1241 
1242     taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1243                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1244     taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1245                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1246 
1247     taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1248                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1249 
1250     taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1251                       info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1252 
1253     if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1254         id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1255         info->reg_zcr = read_zcr_features();
1256         taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1257                     info->reg_zcr, boot->reg_zcr);
1258 
1259         /* Probe vector lengths */
1260         if (!system_capabilities_finalized())
1261             vec_update_vq_map(ARM64_VEC_SVE);
1262     }
1263 
1264     if (IS_ENABLED(CONFIG_ARM64_SME) &&
1265         id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1266         info->reg_smcr = read_smcr_features();
1267         /*
1268          * We mask out SMPS since even if the hardware
1269          * supports priorities the kernel does not at present
1270          * and we block access to them.
1271          */
1272         info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1273         taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1274                     info->reg_smcr, boot->reg_smcr);
1275 
1276         /* Probe vector lengths */
1277         if (!system_capabilities_finalized())
1278             vec_update_vq_map(ARM64_VEC_SME);
1279     }
1280 
1281     /*
1282      * The kernel uses the LDGM/STGM instructions and the number of tags
1283      * they read/write depends on the GMID_EL1.BS field. Check that the
1284      * value is the same on all CPUs.
1285      */
1286     if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1287         id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1288         taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1289                           info->reg_gmid, boot->reg_gmid);
1290     }
1291 
1292     /*
1293      * If we don't have AArch32 at all then skip the checks entirely
1294      * as the register values may be UNKNOWN and we're not going to be
1295      * using them for anything.
1296      *
1297      * This relies on a sanitised view of the AArch64 ID registers
1298      * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1299      */
1300     if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1301         lazy_init_32bit_cpu_features(info, boot);
1302         taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1303                            &boot->aarch32);
1304     }
1305 
1306     /*
1307      * Mismatched CPU features are a recipe for disaster. Don't even
1308      * pretend to support them.
1309      */
1310     if (taint) {
1311         pr_warn_once("Unsupported CPU feature variation detected.\n");
1312         add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1313     }
1314 }
1315 
1316 u64 read_sanitised_ftr_reg(u32 id)
1317 {
1318     struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1319 
1320     if (!regp)
1321         return 0;
1322     return regp->sys_val;
1323 }
1324 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1325 
1326 #define read_sysreg_case(r) \
1327     case r:     val = read_sysreg_s(r); break;
1328 
1329 /*
1330  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1331  * Read the system register on the current CPU
1332  */
1333 u64 __read_sysreg_by_encoding(u32 sys_id)
1334 {
1335     struct arm64_ftr_reg *regp;
1336     u64 val;
1337 
1338     switch (sys_id) {
1339     read_sysreg_case(SYS_ID_PFR0_EL1);
1340     read_sysreg_case(SYS_ID_PFR1_EL1);
1341     read_sysreg_case(SYS_ID_PFR2_EL1);
1342     read_sysreg_case(SYS_ID_DFR0_EL1);
1343     read_sysreg_case(SYS_ID_DFR1_EL1);
1344     read_sysreg_case(SYS_ID_MMFR0_EL1);
1345     read_sysreg_case(SYS_ID_MMFR1_EL1);
1346     read_sysreg_case(SYS_ID_MMFR2_EL1);
1347     read_sysreg_case(SYS_ID_MMFR3_EL1);
1348     read_sysreg_case(SYS_ID_MMFR4_EL1);
1349     read_sysreg_case(SYS_ID_MMFR5_EL1);
1350     read_sysreg_case(SYS_ID_ISAR0_EL1);
1351     read_sysreg_case(SYS_ID_ISAR1_EL1);
1352     read_sysreg_case(SYS_ID_ISAR2_EL1);
1353     read_sysreg_case(SYS_ID_ISAR3_EL1);
1354     read_sysreg_case(SYS_ID_ISAR4_EL1);
1355     read_sysreg_case(SYS_ID_ISAR5_EL1);
1356     read_sysreg_case(SYS_ID_ISAR6_EL1);
1357     read_sysreg_case(SYS_MVFR0_EL1);
1358     read_sysreg_case(SYS_MVFR1_EL1);
1359     read_sysreg_case(SYS_MVFR2_EL1);
1360 
1361     read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1362     read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1363     read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1364     read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1365     read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1366     read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1367     read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1368     read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1369     read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1370     read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1371     read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1372     read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1373 
1374     read_sysreg_case(SYS_CNTFRQ_EL0);
1375     read_sysreg_case(SYS_CTR_EL0);
1376     read_sysreg_case(SYS_DCZID_EL0);
1377 
1378     default:
1379         BUG();
1380         return 0;
1381     }
1382 
1383     regp  = get_arm64_ftr_reg(sys_id);
1384     if (regp) {
1385         val &= ~regp->override->mask;
1386         val |= (regp->override->val & regp->override->mask);
1387     }
1388 
1389     return val;
1390 }
1391 
1392 #include <linux/irqchip/arm-gic-v3.h>
1393 
1394 static bool
1395 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1396 {
1397     int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1398                             entry->field_width,
1399                             entry->sign);
1400 
1401     return val >= entry->min_field_value;
1402 }
1403 
1404 static bool
1405 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1406 {
1407     u64 val;
1408 
1409     WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1410     if (scope == SCOPE_SYSTEM)
1411         val = read_sanitised_ftr_reg(entry->sys_reg);
1412     else
1413         val = __read_sysreg_by_encoding(entry->sys_reg);
1414 
1415     return feature_matches(val, entry);
1416 }
1417 
1418 const struct cpumask *system_32bit_el0_cpumask(void)
1419 {
1420     if (!system_supports_32bit_el0())
1421         return cpu_none_mask;
1422 
1423     if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1424         return cpu_32bit_el0_mask;
1425 
1426     return cpu_possible_mask;
1427 }
1428 
1429 static int __init parse_32bit_el0_param(char *str)
1430 {
1431     allow_mismatched_32bit_el0 = true;
1432     return 0;
1433 }
1434 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1435 
1436 static ssize_t aarch32_el0_show(struct device *dev,
1437                 struct device_attribute *attr, char *buf)
1438 {
1439     const struct cpumask *mask = system_32bit_el0_cpumask();
1440 
1441     return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1442 }
1443 static const DEVICE_ATTR_RO(aarch32_el0);
1444 
1445 static int __init aarch32_el0_sysfs_init(void)
1446 {
1447     if (!allow_mismatched_32bit_el0)
1448         return 0;
1449 
1450     return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1451 }
1452 device_initcall(aarch32_el0_sysfs_init);
1453 
1454 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1455 {
1456     if (!has_cpuid_feature(entry, scope))
1457         return allow_mismatched_32bit_el0;
1458 
1459     if (scope == SCOPE_SYSTEM)
1460         pr_info("detected: 32-bit EL0 Support\n");
1461 
1462     return true;
1463 }
1464 
1465 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1466 {
1467     bool has_sre;
1468 
1469     if (!has_cpuid_feature(entry, scope))
1470         return false;
1471 
1472     has_sre = gic_enable_sre();
1473     if (!has_sre)
1474         pr_warn_once("%s present but disabled by higher exception level\n",
1475                  entry->desc);
1476 
1477     return has_sre;
1478 }
1479 
1480 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1481 {
1482     u32 midr = read_cpuid_id();
1483 
1484     /* Cavium ThunderX pass 1.x and 2.x */
1485     return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1486         MIDR_CPU_VAR_REV(0, 0),
1487         MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1488 }
1489 
1490 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1491 {
1492     u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1493 
1494     return cpuid_feature_extract_signed_field(pfr0,
1495                     ID_AA64PFR0_FP_SHIFT) < 0;
1496 }
1497 
1498 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1499               int scope)
1500 {
1501     u64 ctr;
1502 
1503     if (scope == SCOPE_SYSTEM)
1504         ctr = arm64_ftr_reg_ctrel0.sys_val;
1505     else
1506         ctr = read_cpuid_effective_cachetype();
1507 
1508     return ctr & BIT(CTR_EL0_IDC_SHIFT);
1509 }
1510 
1511 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1512 {
1513     /*
1514      * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1515      * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1516      * to the CTR_EL0 on this CPU and emulate it with the real/safe
1517      * value.
1518      */
1519     if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1520         sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1521 }
1522 
1523 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1524               int scope)
1525 {
1526     u64 ctr;
1527 
1528     if (scope == SCOPE_SYSTEM)
1529         ctr = arm64_ftr_reg_ctrel0.sys_val;
1530     else
1531         ctr = read_cpuid_cachetype();
1532 
1533     return ctr & BIT(CTR_EL0_DIC_SHIFT);
1534 }
1535 
1536 static bool __maybe_unused
1537 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1538 {
1539     /*
1540      * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1541      * may share TLB entries with a CPU stuck in the crashed
1542      * kernel.
1543      */
1544     if (is_kdump_kernel())
1545         return false;
1546 
1547     if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1548         return false;
1549 
1550     return has_cpuid_feature(entry, scope);
1551 }
1552 
1553 /*
1554  * This check is triggered during the early boot before the cpufeature
1555  * is initialised. Checking the status on the local CPU allows the boot
1556  * CPU to detect the need for non-global mappings and thus avoiding a
1557  * pagetable re-write after all the CPUs are booted. This check will be
1558  * anyway run on individual CPUs, allowing us to get the consistent
1559  * state once the SMP CPUs are up and thus make the switch to non-global
1560  * mappings if required.
1561  */
1562 bool kaslr_requires_kpti(void)
1563 {
1564     if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1565         return false;
1566 
1567     /*
1568      * E0PD does a similar job to KPTI so can be used instead
1569      * where available.
1570      */
1571     if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1572         u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1573         if (cpuid_feature_extract_unsigned_field(mmfr2,
1574                         ID_AA64MMFR2_E0PD_SHIFT))
1575             return false;
1576     }
1577 
1578     /*
1579      * Systems affected by Cavium erratum 24756 are incompatible
1580      * with KPTI.
1581      */
1582     if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1583         extern const struct midr_range cavium_erratum_27456_cpus[];
1584 
1585         if (is_midr_in_range_list(read_cpuid_id(),
1586                       cavium_erratum_27456_cpus))
1587             return false;
1588     }
1589 
1590     return kaslr_offset() > 0;
1591 }
1592 
1593 static bool __meltdown_safe = true;
1594 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1595 
1596 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1597                 int scope)
1598 {
1599     /* List of CPUs that are not vulnerable and don't need KPTI */
1600     static const struct midr_range kpti_safe_list[] = {
1601         MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1602         MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1603         MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1604         MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1605         MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1606         MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1607         MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1608         MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1609         MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1610         MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1611         MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1612         MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1613         MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1614         MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1615         MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1616         { /* sentinel */ }
1617     };
1618     char const *str = "kpti command line option";
1619     bool meltdown_safe;
1620 
1621     meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1622 
1623     /* Defer to CPU feature registers */
1624     if (has_cpuid_feature(entry, scope))
1625         meltdown_safe = true;
1626 
1627     if (!meltdown_safe)
1628         __meltdown_safe = false;
1629 
1630     /*
1631      * For reasons that aren't entirely clear, enabling KPTI on Cavium
1632      * ThunderX leads to apparent I-cache corruption of kernel text, which
1633      * ends as well as you might imagine. Don't even try. We cannot rely
1634      * on the cpus_have_*cap() helpers here to detect the CPU erratum
1635      * because cpucap detection order may change. However, since we know
1636      * affected CPUs are always in a homogeneous configuration, it is
1637      * safe to rely on this_cpu_has_cap() here.
1638      */
1639     if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1640         str = "ARM64_WORKAROUND_CAVIUM_27456";
1641         __kpti_forced = -1;
1642     }
1643 
1644     /* Useful for KASLR robustness */
1645     if (kaslr_requires_kpti()) {
1646         if (!__kpti_forced) {
1647             str = "KASLR";
1648             __kpti_forced = 1;
1649         }
1650     }
1651 
1652     if (cpu_mitigations_off() && !__kpti_forced) {
1653         str = "mitigations=off";
1654         __kpti_forced = -1;
1655     }
1656 
1657     if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1658         pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1659         return false;
1660     }
1661 
1662     /* Forced? */
1663     if (__kpti_forced) {
1664         pr_info_once("kernel page table isolation forced %s by %s\n",
1665                  __kpti_forced > 0 ? "ON" : "OFF", str);
1666         return __kpti_forced > 0;
1667     }
1668 
1669     return !meltdown_safe;
1670 }
1671 
1672 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1673 #define KPTI_NG_TEMP_VA     (-(1UL << PMD_SHIFT))
1674 
1675 extern
1676 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1677                  phys_addr_t size, pgprot_t prot,
1678                  phys_addr_t (*pgtable_alloc)(int), int flags);
1679 
1680 static phys_addr_t kpti_ng_temp_alloc;
1681 
1682 static phys_addr_t kpti_ng_pgd_alloc(int shift)
1683 {
1684     kpti_ng_temp_alloc -= PAGE_SIZE;
1685     return kpti_ng_temp_alloc;
1686 }
1687 
1688 static void __nocfi
1689 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1690 {
1691     typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1692     extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1693     kpti_remap_fn *remap_fn;
1694 
1695     int cpu = smp_processor_id();
1696     int levels = CONFIG_PGTABLE_LEVELS;
1697     int order = order_base_2(levels);
1698     u64 kpti_ng_temp_pgd_pa = 0;
1699     pgd_t *kpti_ng_temp_pgd;
1700     u64 alloc = 0;
1701 
1702     if (__this_cpu_read(this_cpu_vector) == vectors) {
1703         const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1704 
1705         __this_cpu_write(this_cpu_vector, v);
1706     }
1707 
1708     /*
1709      * We don't need to rewrite the page-tables if either we've done
1710      * it already or we have KASLR enabled and therefore have not
1711      * created any global mappings at all.
1712      */
1713     if (arm64_use_ng_mappings)
1714         return;
1715 
1716     remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));
1717 
1718     if (!cpu) {
1719         alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1720         kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1721         kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1722 
1723         //
1724         // Create a minimal page table hierarchy that permits us to map
1725         // the swapper page tables temporarily as we traverse them.
1726         //
1727         // The physical pages are laid out as follows:
1728         //
1729         // +--------+-/-------+-/------ +-\\--------+
1730         // :  PTE[] : | PMD[] : | PUD[] : || PGD[]  :
1731         // +--------+-\-------+-\------ +-//--------+
1732         //      ^
1733         // The first page is mapped into this hierarchy at a PMD_SHIFT
1734         // aligned virtual address, so that we can manipulate the PTE
1735         // level entries while the mapping is active. The first entry
1736         // covers the PTE[] page itself, the remaining entries are free
1737         // to be used as a ad-hoc fixmap.
1738         //
1739         create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1740                     KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1741                     kpti_ng_pgd_alloc, 0);
1742     }
1743 
1744     cpu_install_idmap();
1745     remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1746     cpu_uninstall_idmap();
1747 
1748     if (!cpu) {
1749         free_pages(alloc, order);
1750         arm64_use_ng_mappings = true;
1751     }
1752 }
1753 #else
1754 static void
1755 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1756 {
1757 }
1758 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1759 
1760 static int __init parse_kpti(char *str)
1761 {
1762     bool enabled;
1763     int ret = strtobool(str, &enabled);
1764 
1765     if (ret)
1766         return ret;
1767 
1768     __kpti_forced = enabled ? 1 : -1;
1769     return 0;
1770 }
1771 early_param("kpti", parse_kpti);
1772 
1773 #ifdef CONFIG_ARM64_HW_AFDBM
1774 static inline void __cpu_enable_hw_dbm(void)
1775 {
1776     u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1777 
1778     write_sysreg(tcr, tcr_el1);
1779     isb();
1780     local_flush_tlb_all();
1781 }
1782 
1783 static bool cpu_has_broken_dbm(void)
1784 {
1785     /* List of CPUs which have broken DBM support. */
1786     static const struct midr_range cpus[] = {
1787 #ifdef CONFIG_ARM64_ERRATUM_1024718
1788         MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1789         /* Kryo4xx Silver (rdpe => r1p0) */
1790         MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1791 #endif
1792 #ifdef CONFIG_ARM64_ERRATUM_2051678
1793         MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1794 #endif
1795         {},
1796     };
1797 
1798     return is_midr_in_range_list(read_cpuid_id(), cpus);
1799 }
1800 
1801 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1802 {
1803     return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1804            !cpu_has_broken_dbm();
1805 }
1806 
1807 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1808 {
1809     if (cpu_can_use_dbm(cap))
1810         __cpu_enable_hw_dbm();
1811 }
1812 
1813 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1814                int __unused)
1815 {
1816     static bool detected = false;
1817     /*
1818      * DBM is a non-conflicting feature. i.e, the kernel can safely
1819      * run a mix of CPUs with and without the feature. So, we
1820      * unconditionally enable the capability to allow any late CPU
1821      * to use the feature. We only enable the control bits on the
1822      * CPU, if it actually supports.
1823      *
1824      * We have to make sure we print the "feature" detection only
1825      * when at least one CPU actually uses it. So check if this CPU
1826      * can actually use it and print the message exactly once.
1827      *
1828      * This is safe as all CPUs (including secondary CPUs - due to the
1829      * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1830      * goes through the "matches" check exactly once. Also if a CPU
1831      * matches the criteria, it is guaranteed that the CPU will turn
1832      * the DBM on, as the capability is unconditionally enabled.
1833      */
1834     if (!detected && cpu_can_use_dbm(cap)) {
1835         detected = true;
1836         pr_info("detected: Hardware dirty bit management\n");
1837     }
1838 
1839     return true;
1840 }
1841 
1842 #endif
1843 
1844 #ifdef CONFIG_ARM64_AMU_EXTN
1845 
1846 /*
1847  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1848  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1849  * information regarding all the events that it supports. When a CPU bit is
1850  * set in the cpumask, the user of this feature can only rely on the presence
1851  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1852  * counters are enabled or access to these counters is enabled by code
1853  * executed at higher exception levels (firmware).
1854  */
1855 static struct cpumask amu_cpus __read_mostly;
1856 
1857 bool cpu_has_amu_feat(int cpu)
1858 {
1859     return cpumask_test_cpu(cpu, &amu_cpus);
1860 }
1861 
1862 int get_cpu_with_amu_feat(void)
1863 {
1864     return cpumask_any(&amu_cpus);
1865 }
1866 
1867 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1868 {
1869     if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1870         pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1871             smp_processor_id());
1872         cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1873 
1874         /* 0 reference values signal broken/disabled counters */
1875         if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1876             update_freq_counters_refs();
1877     }
1878 }
1879 
1880 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1881             int __unused)
1882 {
1883     /*
1884      * The AMU extension is a non-conflicting feature: the kernel can
1885      * safely run a mix of CPUs with and without support for the
1886      * activity monitors extension. Therefore, unconditionally enable
1887      * the capability to allow any late CPU to use the feature.
1888      *
1889      * With this feature unconditionally enabled, the cpu_enable
1890      * function will be called for all CPUs that match the criteria,
1891      * including secondary and hotplugged, marking this feature as
1892      * present on that respective CPU. The enable function will also
1893      * print a detection message.
1894      */
1895 
1896     return true;
1897 }
1898 #else
1899 int get_cpu_with_amu_feat(void)
1900 {
1901     return nr_cpu_ids;
1902 }
1903 #endif
1904 
1905 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1906 {
1907     return is_kernel_in_hyp_mode();
1908 }
1909 
1910 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1911 {
1912     /*
1913      * Copy register values that aren't redirected by hardware.
1914      *
1915      * Before code patching, we only set tpidr_el1, all CPUs need to copy
1916      * this value to tpidr_el2 before we patch the code. Once we've done
1917      * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1918      * do anything here.
1919      */
1920     if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1921         write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1922 }
1923 
1924 #ifdef CONFIG_ARM64_PAN
1925 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1926 {
1927     /*
1928      * We modify PSTATE. This won't work from irq context as the PSTATE
1929      * is discarded once we return from the exception.
1930      */
1931     WARN_ON_ONCE(in_interrupt());
1932 
1933     sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1934     set_pstate_pan(1);
1935 }
1936 #endif /* CONFIG_ARM64_PAN */
1937 
1938 #ifdef CONFIG_ARM64_RAS_EXTN
1939 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1940 {
1941     /* Firmware may have left a deferred SError in this register. */
1942     write_sysreg_s(0, SYS_DISR_EL1);
1943 }
1944 #endif /* CONFIG_ARM64_RAS_EXTN */
1945 
1946 #ifdef CONFIG_ARM64_PTR_AUTH
1947 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1948 {
1949     int boot_val, sec_val;
1950 
1951     /* We don't expect to be called with SCOPE_SYSTEM */
1952     WARN_ON(scope == SCOPE_SYSTEM);
1953     /*
1954      * The ptr-auth feature levels are not intercompatible with lower
1955      * levels. Hence we must match ptr-auth feature level of the secondary
1956      * CPUs with that of the boot CPU. The level of boot cpu is fetched
1957      * from the sanitised register whereas direct register read is done for
1958      * the secondary CPUs.
1959      * The sanitised feature state is guaranteed to match that of the
1960      * boot CPU as a mismatched secondary CPU is parked before it gets
1961      * a chance to update the state, with the capability.
1962      */
1963     boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1964                            entry->field_pos, entry->sign);
1965     if (scope & SCOPE_BOOT_CPU)
1966         return boot_val >= entry->min_field_value;
1967     /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1968     sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1969                           entry->field_pos, entry->sign);
1970     return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
1971 }
1972 
1973 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1974                      int scope)
1975 {
1976     bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1977     bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
1978     bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
1979 
1980     return apa || apa3 || api;
1981 }
1982 
1983 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1984                  int __unused)
1985 {
1986     bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1987     bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
1988     bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
1989 
1990     return gpa || gpa3 || gpi;
1991 }
1992 #endif /* CONFIG_ARM64_PTR_AUTH */
1993 
1994 #ifdef CONFIG_ARM64_E0PD
1995 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1996 {
1997     if (this_cpu_has_cap(ARM64_HAS_E0PD))
1998         sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1999 }
2000 #endif /* CONFIG_ARM64_E0PD */
2001 
2002 #ifdef CONFIG_ARM64_PSEUDO_NMI
2003 static bool enable_pseudo_nmi;
2004 
2005 static int __init early_enable_pseudo_nmi(char *p)
2006 {
2007     return strtobool(p, &enable_pseudo_nmi);
2008 }
2009 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
2010 
2011 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2012                    int scope)
2013 {
2014     return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
2015 }
2016 #endif
2017 
2018 #ifdef CONFIG_ARM64_BTI
2019 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2020 {
2021     /*
2022      * Use of X16/X17 for tail-calls and trampolines that jump to
2023      * function entry points using BR is a requirement for
2024      * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2025      * So, be strict and forbid other BRs using other registers to
2026      * jump onto a PACIxSP instruction:
2027      */
2028     sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2029     isb();
2030 }
2031 #endif /* CONFIG_ARM64_BTI */
2032 
2033 #ifdef CONFIG_ARM64_MTE
2034 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2035 {
2036     sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2037     isb();
2038 
2039     /*
2040      * Clear the tags in the zero page. This needs to be done via the
2041      * linear map which has the Tagged attribute.
2042      */
2043     if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
2044         mte_clear_page_tags(lm_alias(empty_zero_page));
2045 
2046     kasan_init_hw_tags_cpu();
2047 }
2048 #endif /* CONFIG_ARM64_MTE */
2049 
2050 static void elf_hwcap_fixup(void)
2051 {
2052 #ifdef CONFIG_ARM64_ERRATUM_1742098
2053     if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
2054         compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2055 #endif /* ARM64_ERRATUM_1742098 */
2056 }
2057 
2058 #ifdef CONFIG_KVM
2059 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2060 {
2061     return kvm_get_mode() == KVM_MODE_PROTECTED;
2062 }
2063 #endif /* CONFIG_KVM */
2064 
2065 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2066 {
2067     sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2068 }
2069 
2070 /* Internal helper functions to match cpu capability type */
2071 static bool
2072 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2073 {
2074     return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2075 }
2076 
2077 static bool
2078 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2079 {
2080     return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2081 }
2082 
2083 static bool
2084 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2085 {
2086     return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2087 }
2088 
2089 static const struct arm64_cpu_capabilities arm64_features[] = {
2090     {
2091         .desc = "GIC system register CPU interface",
2092         .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
2093         .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2094         .matches = has_useable_gicv3_cpuif,
2095         .sys_reg = SYS_ID_AA64PFR0_EL1,
2096         .field_pos = ID_AA64PFR0_GIC_SHIFT,
2097         .field_width = 4,
2098         .sign = FTR_UNSIGNED,
2099         .min_field_value = 1,
2100     },
2101     {
2102         .desc = "Enhanced Counter Virtualization",
2103         .capability = ARM64_HAS_ECV,
2104         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2105         .matches = has_cpuid_feature,
2106         .sys_reg = SYS_ID_AA64MMFR0_EL1,
2107         .field_pos = ID_AA64MMFR0_ECV_SHIFT,
2108         .field_width = 4,
2109         .sign = FTR_UNSIGNED,
2110         .min_field_value = 1,
2111     },
2112 #ifdef CONFIG_ARM64_PAN
2113     {
2114         .desc = "Privileged Access Never",
2115         .capability = ARM64_HAS_PAN,
2116         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2117         .matches = has_cpuid_feature,
2118         .sys_reg = SYS_ID_AA64MMFR1_EL1,
2119         .field_pos = ID_AA64MMFR1_PAN_SHIFT,
2120         .field_width = 4,
2121         .sign = FTR_UNSIGNED,
2122         .min_field_value = 1,
2123         .cpu_enable = cpu_enable_pan,
2124     },
2125 #endif /* CONFIG_ARM64_PAN */
2126 #ifdef CONFIG_ARM64_EPAN
2127     {
2128         .desc = "Enhanced Privileged Access Never",
2129         .capability = ARM64_HAS_EPAN,
2130         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2131         .matches = has_cpuid_feature,
2132         .sys_reg = SYS_ID_AA64MMFR1_EL1,
2133         .field_pos = ID_AA64MMFR1_PAN_SHIFT,
2134         .field_width = 4,
2135         .sign = FTR_UNSIGNED,
2136         .min_field_value = 3,
2137     },
2138 #endif /* CONFIG_ARM64_EPAN */
2139 #ifdef CONFIG_ARM64_LSE_ATOMICS
2140     {
2141         .desc = "LSE atomic instructions",
2142         .capability = ARM64_HAS_LSE_ATOMICS,
2143         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2144         .matches = has_cpuid_feature,
2145         .sys_reg = SYS_ID_AA64ISAR0_EL1,
2146         .field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT,
2147         .field_width = 4,
2148         .sign = FTR_UNSIGNED,
2149         .min_field_value = 2,
2150     },
2151 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2152     {
2153         .desc = "Software prefetching using PRFM",
2154         .capability = ARM64_HAS_NO_HW_PREFETCH,
2155         .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2156         .matches = has_no_hw_prefetch,
2157     },
2158     {
2159         .desc = "Virtualization Host Extensions",
2160         .capability = ARM64_HAS_VIRT_HOST_EXTN,
2161         .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2162         .matches = runs_at_el2,
2163         .cpu_enable = cpu_copy_el2regs,
2164     },
2165     {
2166         .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2167         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2168         .matches = has_32bit_el0,
2169         .sys_reg = SYS_ID_AA64PFR0_EL1,
2170         .sign = FTR_UNSIGNED,
2171         .field_pos = ID_AA64PFR0_EL0_SHIFT,
2172         .field_width = 4,
2173         .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2174     },
2175 #ifdef CONFIG_KVM
2176     {
2177         .desc = "32-bit EL1 Support",
2178         .capability = ARM64_HAS_32BIT_EL1,
2179         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2180         .matches = has_cpuid_feature,
2181         .sys_reg = SYS_ID_AA64PFR0_EL1,
2182         .sign = FTR_UNSIGNED,
2183         .field_pos = ID_AA64PFR0_EL1_SHIFT,
2184         .field_width = 4,
2185         .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2186     },
2187     {
2188         .desc = "Protected KVM",
2189         .capability = ARM64_KVM_PROTECTED_MODE,
2190         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2191         .matches = is_kvm_protected_mode,
2192     },
2193 #endif
2194     {
2195         .desc = "Kernel page table isolation (KPTI)",
2196         .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2197         .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2198         /*
2199          * The ID feature fields below are used to indicate that
2200          * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2201          * more details.
2202          */
2203         .sys_reg = SYS_ID_AA64PFR0_EL1,
2204         .field_pos = ID_AA64PFR0_CSV3_SHIFT,
2205         .field_width = 4,
2206         .min_field_value = 1,
2207         .matches = unmap_kernel_at_el0,
2208         .cpu_enable = kpti_install_ng_mappings,
2209     },
2210     {
2211         /* FP/SIMD is not implemented */
2212         .capability = ARM64_HAS_NO_FPSIMD,
2213         .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2214         .min_field_value = 0,
2215         .matches = has_no_fpsimd,
2216     },
2217 #ifdef CONFIG_ARM64_PMEM
2218     {
2219         .desc = "Data cache clean to Point of Persistence",
2220         .capability = ARM64_HAS_DCPOP,
2221         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2222         .matches = has_cpuid_feature,
2223         .sys_reg = SYS_ID_AA64ISAR1_EL1,
2224         .field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT,
2225         .field_width = 4,
2226         .min_field_value = 1,
2227     },
2228     {
2229         .desc = "Data cache clean to Point of Deep Persistence",
2230         .capability = ARM64_HAS_DCPODP,
2231         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2232         .matches = has_cpuid_feature,
2233         .sys_reg = SYS_ID_AA64ISAR1_EL1,
2234         .sign = FTR_UNSIGNED,
2235         .field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT,
2236         .field_width = 4,
2237         .min_field_value = 2,
2238     },
2239 #endif
2240 #ifdef CONFIG_ARM64_SVE
2241     {
2242         .desc = "Scalable Vector Extension",
2243         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2244         .capability = ARM64_SVE,
2245         .sys_reg = SYS_ID_AA64PFR0_EL1,
2246         .sign = FTR_UNSIGNED,
2247         .field_pos = ID_AA64PFR0_SVE_SHIFT,
2248         .field_width = 4,
2249         .min_field_value = ID_AA64PFR0_SVE,
2250         .matches = has_cpuid_feature,
2251         .cpu_enable = sve_kernel_enable,
2252     },
2253 #endif /* CONFIG_ARM64_SVE */
2254 #ifdef CONFIG_ARM64_RAS_EXTN
2255     {
2256         .desc = "RAS Extension Support",
2257         .capability = ARM64_HAS_RAS_EXTN,
2258         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2259         .matches = has_cpuid_feature,
2260         .sys_reg = SYS_ID_AA64PFR0_EL1,
2261         .sign = FTR_UNSIGNED,
2262         .field_pos = ID_AA64PFR0_RAS_SHIFT,
2263         .field_width = 4,
2264         .min_field_value = ID_AA64PFR0_RAS_V1,
2265         .cpu_enable = cpu_clear_disr,
2266     },
2267 #endif /* CONFIG_ARM64_RAS_EXTN */
2268 #ifdef CONFIG_ARM64_AMU_EXTN
2269     {
2270         /*
2271          * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2272          * Therefore, don't provide .desc as we don't want the detection
2273          * message to be shown until at least one CPU is detected to
2274          * support the feature.
2275          */
2276         .capability = ARM64_HAS_AMU_EXTN,
2277         .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2278         .matches = has_amu,
2279         .sys_reg = SYS_ID_AA64PFR0_EL1,
2280         .sign = FTR_UNSIGNED,
2281         .field_pos = ID_AA64PFR0_AMU_SHIFT,
2282         .field_width = 4,
2283         .min_field_value = ID_AA64PFR0_AMU,
2284         .cpu_enable = cpu_amu_enable,
2285     },
2286 #endif /* CONFIG_ARM64_AMU_EXTN */
2287     {
2288         .desc = "Data cache clean to the PoU not required for I/D coherence",
2289         .capability = ARM64_HAS_CACHE_IDC,
2290         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2291         .matches = has_cache_idc,
2292         .cpu_enable = cpu_emulate_effective_ctr,
2293     },
2294     {
2295         .desc = "Instruction cache invalidation not required for I/D coherence",
2296         .capability = ARM64_HAS_CACHE_DIC,
2297         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2298         .matches = has_cache_dic,
2299     },
2300     {
2301         .desc = "Stage-2 Force Write-Back",
2302         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2303         .capability = ARM64_HAS_STAGE2_FWB,
2304         .sys_reg = SYS_ID_AA64MMFR2_EL1,
2305         .sign = FTR_UNSIGNED,
2306         .field_pos = ID_AA64MMFR2_FWB_SHIFT,
2307         .field_width = 4,
2308         .min_field_value = 1,
2309         .matches = has_cpuid_feature,
2310     },
2311     {
2312         .desc = "ARMv8.4 Translation Table Level",
2313         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2314         .capability = ARM64_HAS_ARMv8_4_TTL,
2315         .sys_reg = SYS_ID_AA64MMFR2_EL1,
2316         .sign = FTR_UNSIGNED,
2317         .field_pos = ID_AA64MMFR2_TTL_SHIFT,
2318         .field_width = 4,
2319         .min_field_value = 1,
2320         .matches = has_cpuid_feature,
2321     },
2322     {
2323         .desc = "TLB range maintenance instructions",
2324         .capability = ARM64_HAS_TLB_RANGE,
2325         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2326         .matches = has_cpuid_feature,
2327         .sys_reg = SYS_ID_AA64ISAR0_EL1,
2328         .field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT,
2329         .field_width = 4,
2330         .sign = FTR_UNSIGNED,
2331         .min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE,
2332     },
2333 #ifdef CONFIG_ARM64_HW_AFDBM
2334     {
2335         /*
2336          * Since we turn this on always, we don't want the user to
2337          * think that the feature is available when it may not be.
2338          * So hide the description.
2339          *
2340          * .desc = "Hardware pagetable Dirty Bit Management",
2341          *
2342          */
2343         .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2344         .capability = ARM64_HW_DBM,
2345         .sys_reg = SYS_ID_AA64MMFR1_EL1,
2346         .sign = FTR_UNSIGNED,
2347         .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
2348         .field_width = 4,
2349         .min_field_value = 2,
2350         .matches = has_hw_dbm,
2351         .cpu_enable = cpu_enable_hw_dbm,
2352     },
2353 #endif
2354     {
2355         .desc = "CRC32 instructions",
2356         .capability = ARM64_HAS_CRC32,
2357         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2358         .matches = has_cpuid_feature,
2359         .sys_reg = SYS_ID_AA64ISAR0_EL1,
2360         .field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT,
2361         .field_width = 4,
2362         .min_field_value = 1,
2363     },
2364     {
2365         .desc = "Speculative Store Bypassing Safe (SSBS)",
2366         .capability = ARM64_SSBS,
2367         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2368         .matches = has_cpuid_feature,
2369         .sys_reg = SYS_ID_AA64PFR1_EL1,
2370         .field_pos = ID_AA64PFR1_SSBS_SHIFT,
2371         .field_width = 4,
2372         .sign = FTR_UNSIGNED,
2373         .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2374     },
2375 #ifdef CONFIG_ARM64_CNP
2376     {
2377         .desc = "Common not Private translations",
2378         .capability = ARM64_HAS_CNP,
2379         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2380         .matches = has_useable_cnp,
2381         .sys_reg = SYS_ID_AA64MMFR2_EL1,
2382         .sign = FTR_UNSIGNED,
2383         .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2384         .field_width = 4,
2385         .min_field_value = 1,
2386         .cpu_enable = cpu_enable_cnp,
2387     },
2388 #endif
2389     {
2390         .desc = "Speculation barrier (SB)",
2391         .capability = ARM64_HAS_SB,
2392         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2393         .matches = has_cpuid_feature,
2394         .sys_reg = SYS_ID_AA64ISAR1_EL1,
2395         .field_pos = ID_AA64ISAR1_EL1_SB_SHIFT,
2396         .field_width = 4,
2397         .sign = FTR_UNSIGNED,
2398         .min_field_value = 1,
2399     },
2400 #ifdef CONFIG_ARM64_PTR_AUTH
2401     {
2402         .desc = "Address authentication (architected QARMA5 algorithm)",
2403         .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2404         .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2405         .sys_reg = SYS_ID_AA64ISAR1_EL1,
2406         .sign = FTR_UNSIGNED,
2407         .field_pos = ID_AA64ISAR1_EL1_APA_SHIFT,
2408         .field_width = 4,
2409         .min_field_value = ID_AA64ISAR1_EL1_APA_PAuth,
2410         .matches = has_address_auth_cpucap,
2411     },
2412     {
2413         .desc = "Address authentication (architected QARMA3 algorithm)",
2414         .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2415         .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2416         .sys_reg = SYS_ID_AA64ISAR2_EL1,
2417         .sign = FTR_UNSIGNED,
2418         .field_pos = ID_AA64ISAR2_EL1_APA3_SHIFT,
2419         .field_width = 4,
2420         .min_field_value = ID_AA64ISAR2_EL1_APA3_PAuth,
2421         .matches = has_address_auth_cpucap,
2422     },
2423     {
2424         .desc = "Address authentication (IMP DEF algorithm)",
2425         .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2426         .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2427         .sys_reg = SYS_ID_AA64ISAR1_EL1,
2428         .sign = FTR_UNSIGNED,
2429         .field_pos = ID_AA64ISAR1_EL1_API_SHIFT,
2430         .field_width = 4,
2431         .min_field_value = ID_AA64ISAR1_EL1_API_PAuth,
2432         .matches = has_address_auth_cpucap,
2433     },
2434     {
2435         .capability = ARM64_HAS_ADDRESS_AUTH,
2436         .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2437         .matches = has_address_auth_metacap,
2438     },
2439     {
2440         .desc = "Generic authentication (architected QARMA5 algorithm)",
2441         .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2442         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2443         .sys_reg = SYS_ID_AA64ISAR1_EL1,
2444         .sign = FTR_UNSIGNED,
2445         .field_pos = ID_AA64ISAR1_EL1_GPA_SHIFT,
2446         .field_width = 4,
2447         .min_field_value = ID_AA64ISAR1_EL1_GPA_IMP,
2448         .matches = has_cpuid_feature,
2449     },
2450     {
2451         .desc = "Generic authentication (architected QARMA3 algorithm)",
2452         .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2453         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2454         .sys_reg = SYS_ID_AA64ISAR2_EL1,
2455         .sign = FTR_UNSIGNED,
2456         .field_pos = ID_AA64ISAR2_EL1_GPA3_SHIFT,
2457         .field_width = 4,
2458         .min_field_value = ID_AA64ISAR2_EL1_GPA3_IMP,
2459         .matches = has_cpuid_feature,
2460     },
2461     {
2462         .desc = "Generic authentication (IMP DEF algorithm)",
2463         .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2464         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2465         .sys_reg = SYS_ID_AA64ISAR1_EL1,
2466         .sign = FTR_UNSIGNED,
2467         .field_pos = ID_AA64ISAR1_EL1_GPI_SHIFT,
2468         .field_width = 4,
2469         .min_field_value = ID_AA64ISAR1_EL1_GPI_IMP,
2470         .matches = has_cpuid_feature,
2471     },
2472     {
2473         .capability = ARM64_HAS_GENERIC_AUTH,
2474         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2475         .matches = has_generic_auth,
2476     },
2477 #endif /* CONFIG_ARM64_PTR_AUTH */
2478 #ifdef CONFIG_ARM64_PSEUDO_NMI
2479     {
2480         /*
2481          * Depends on having GICv3
2482          */
2483         .desc = "IRQ priority masking",
2484         .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2485         .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2486         .matches = can_use_gic_priorities,
2487         .sys_reg = SYS_ID_AA64PFR0_EL1,
2488         .field_pos = ID_AA64PFR0_GIC_SHIFT,
2489         .field_width = 4,
2490         .sign = FTR_UNSIGNED,
2491         .min_field_value = 1,
2492     },
2493 #endif
2494 #ifdef CONFIG_ARM64_E0PD
2495     {
2496         .desc = "E0PD",
2497         .capability = ARM64_HAS_E0PD,
2498         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2499         .sys_reg = SYS_ID_AA64MMFR2_EL1,
2500         .sign = FTR_UNSIGNED,
2501         .field_width = 4,
2502         .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2503         .matches = has_cpuid_feature,
2504         .min_field_value = 1,
2505         .cpu_enable = cpu_enable_e0pd,
2506     },
2507 #endif
2508     {
2509         .desc = "Random Number Generator",
2510         .capability = ARM64_HAS_RNG,
2511         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2512         .matches = has_cpuid_feature,
2513         .sys_reg = SYS_ID_AA64ISAR0_EL1,
2514         .field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT,
2515         .field_width = 4,
2516         .sign = FTR_UNSIGNED,
2517         .min_field_value = 1,
2518     },
2519 #ifdef CONFIG_ARM64_BTI
2520     {
2521         .desc = "Branch Target Identification",
2522         .capability = ARM64_BTI,
2523 #ifdef CONFIG_ARM64_BTI_KERNEL
2524         .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2525 #else
2526         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2527 #endif
2528         .matches = has_cpuid_feature,
2529         .cpu_enable = bti_enable,
2530         .sys_reg = SYS_ID_AA64PFR1_EL1,
2531         .field_pos = ID_AA64PFR1_BT_SHIFT,
2532         .field_width = 4,
2533         .min_field_value = ID_AA64PFR1_BT_BTI,
2534         .sign = FTR_UNSIGNED,
2535     },
2536 #endif
2537 #ifdef CONFIG_ARM64_MTE
2538     {
2539         .desc = "Memory Tagging Extension",
2540         .capability = ARM64_MTE,
2541         .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2542         .matches = has_cpuid_feature,
2543         .sys_reg = SYS_ID_AA64PFR1_EL1,
2544         .field_pos = ID_AA64PFR1_MTE_SHIFT,
2545         .field_width = 4,
2546         .min_field_value = ID_AA64PFR1_MTE,
2547         .sign = FTR_UNSIGNED,
2548         .cpu_enable = cpu_enable_mte,
2549     },
2550     {
2551         .desc = "Asymmetric MTE Tag Check Fault",
2552         .capability = ARM64_MTE_ASYMM,
2553         .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2554         .matches = has_cpuid_feature,
2555         .sys_reg = SYS_ID_AA64PFR1_EL1,
2556         .field_pos = ID_AA64PFR1_MTE_SHIFT,
2557         .field_width = 4,
2558         .min_field_value = ID_AA64PFR1_MTE_ASYMM,
2559         .sign = FTR_UNSIGNED,
2560     },
2561 #endif /* CONFIG_ARM64_MTE */
2562     {
2563         .desc = "RCpc load-acquire (LDAPR)",
2564         .capability = ARM64_HAS_LDAPR,
2565         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2566         .sys_reg = SYS_ID_AA64ISAR1_EL1,
2567         .sign = FTR_UNSIGNED,
2568         .field_pos = ID_AA64ISAR1_EL1_LRCPC_SHIFT,
2569         .field_width = 4,
2570         .matches = has_cpuid_feature,
2571         .min_field_value = 1,
2572     },
2573 #ifdef CONFIG_ARM64_SME
2574     {
2575         .desc = "Scalable Matrix Extension",
2576         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2577         .capability = ARM64_SME,
2578         .sys_reg = SYS_ID_AA64PFR1_EL1,
2579         .sign = FTR_UNSIGNED,
2580         .field_pos = ID_AA64PFR1_SME_SHIFT,
2581         .field_width = 4,
2582         .min_field_value = ID_AA64PFR1_SME,
2583         .matches = has_cpuid_feature,
2584         .cpu_enable = sme_kernel_enable,
2585     },
2586     /* FA64 should be sorted after the base SME capability */
2587     {
2588         .desc = "FA64",
2589         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2590         .capability = ARM64_SME_FA64,
2591         .sys_reg = SYS_ID_AA64SMFR0_EL1,
2592         .sign = FTR_UNSIGNED,
2593         .field_pos = ID_AA64SMFR0_EL1_FA64_SHIFT,
2594         .field_width = 1,
2595         .min_field_value = ID_AA64SMFR0_EL1_FA64_IMP,
2596         .matches = has_cpuid_feature,
2597         .cpu_enable = fa64_kernel_enable,
2598     },
2599 #endif /* CONFIG_ARM64_SME */
2600     {
2601         .desc = "WFx with timeout",
2602         .capability = ARM64_HAS_WFXT,
2603         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2604         .sys_reg = SYS_ID_AA64ISAR2_EL1,
2605         .sign = FTR_UNSIGNED,
2606         .field_pos = ID_AA64ISAR2_EL1_WFxT_SHIFT,
2607         .field_width = 4,
2608         .matches = has_cpuid_feature,
2609         .min_field_value = ID_AA64ISAR2_EL1_WFxT_IMP,
2610     },
2611     {
2612         .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2613         .capability = ARM64_HAS_TIDCP1,
2614         .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2615         .sys_reg = SYS_ID_AA64MMFR1_EL1,
2616         .sign = FTR_UNSIGNED,
2617         .field_pos = ID_AA64MMFR1_TIDCP1_SHIFT,
2618         .field_width = 4,
2619         .min_field_value = ID_AA64MMFR1_TIDCP1_IMP,
2620         .matches = has_cpuid_feature,
2621         .cpu_enable = cpu_trap_el0_impdef,
2622     },
2623     {},
2624 };
2625 
2626 #define HWCAP_CPUID_MATCH(reg, field, width, s, min_value)          \
2627         .matches = has_cpuid_feature,                   \
2628         .sys_reg = reg,                         \
2629         .field_pos = field,                     \
2630         .field_width = width,                       \
2631         .sign = s,                          \
2632         .min_field_value = min_value,
2633 
2634 #define __HWCAP_CAP(name, cap_type, cap)                    \
2635         .desc = name,                           \
2636         .type = ARM64_CPUCAP_SYSTEM_FEATURE,                \
2637         .hwcap_type = cap_type,                     \
2638         .hwcap = cap,                           \
2639 
2640 #define HWCAP_CAP(reg, field, width, s, min_value, cap_type, cap)       \
2641     {                                   \
2642         __HWCAP_CAP(#cap, cap_type, cap)                \
2643         HWCAP_CPUID_MATCH(reg, field, width, s, min_value)      \
2644     }
2645 
2646 #define HWCAP_MULTI_CAP(list, cap_type, cap)                    \
2647     {                                   \
2648         __HWCAP_CAP(#cap, cap_type, cap)                \
2649         .matches = cpucap_multi_entry_cap_matches,          \
2650         .match_list = list,                     \
2651     }
2652 
2653 #define HWCAP_CAP_MATCH(match, cap_type, cap)                   \
2654     {                                   \
2655         __HWCAP_CAP(#cap, cap_type, cap)                \
2656         .matches = match,                       \
2657     }
2658 
2659 #ifdef CONFIG_ARM64_PTR_AUTH
2660 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2661     {
2662         HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_APA_SHIFT,
2663                   4, FTR_UNSIGNED,
2664                   ID_AA64ISAR1_EL1_APA_PAuth)
2665     },
2666     {
2667         HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_APA3_SHIFT,
2668                   4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_APA3_PAuth)
2669     },
2670     {
2671         HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_API_SHIFT,
2672                   4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_API_PAuth)
2673     },
2674     {},
2675 };
2676 
2677 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2678     {
2679         HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPA_SHIFT,
2680                   4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPA_IMP)
2681     },
2682     {
2683         HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_GPA3_SHIFT,
2684                   4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_GPA3_IMP)
2685     },
2686     {
2687         HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_GPI_SHIFT,
2688                   4, FTR_UNSIGNED, ID_AA64ISAR1_EL1_GPI_IMP)
2689     },
2690     {},
2691 };
2692 #endif
2693 
2694 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2695     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2696     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2697     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2698     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2699     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2700     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2701     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2702     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2703     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2704     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2705     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2706     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2707     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2708     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2709     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2710     HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2711     HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2712     HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2713     HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2714     HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2715     HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2716     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2717     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2718     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2719     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2720     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2721     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2722     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2723     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_SB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2724     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2725     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2726     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2727     HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2728     HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2729 #ifdef CONFIG_ARM64_SVE
2730     HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2731     HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SVEver_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2732     HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2733     HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_AES_PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2734     HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BitPerm_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2735     HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_BF16_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2736     HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SHA3_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2737     HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_SM4_IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2738     HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_I8MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2739     HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F32MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2740     HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_EL1_F64MM_IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2741 #endif
2742     HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2743 #ifdef CONFIG_ARM64_BTI
2744     HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2745 #endif
2746 #ifdef CONFIG_ARM64_PTR_AUTH
2747     HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2748     HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2749 #endif
2750 #ifdef CONFIG_ARM64_MTE
2751     HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2752     HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_MTE_ASYMM, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2753 #endif /* CONFIG_ARM64_MTE */
2754     HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
2755     HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
2756     HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2757     HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_EL1_WFxT_IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2758 #ifdef CONFIG_ARM64_SME
2759     HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SME_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_SME, CAP_HWCAP, KERNEL_HWCAP_SME),
2760     HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_FA64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2761     HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I16I64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2762     HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F64F64_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2763     HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_EL1_I8I32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2764     HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2765     HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_B16F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2766     HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_EL1_F32F32_IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2767 #endif /* CONFIG_ARM64_SME */
2768     {},
2769 };
2770 
2771 #ifdef CONFIG_COMPAT
2772 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2773 {
2774     /*
2775      * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2776      * in line with that of arm32 as in vfp_init(). We make sure that the
2777      * check is future proof, by making sure value is non-zero.
2778      */
2779     u32 mvfr1;
2780 
2781     WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2782     if (scope == SCOPE_SYSTEM)
2783         mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2784     else
2785         mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2786 
2787     return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2788         cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2789         cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2790 }
2791 #endif
2792 
2793 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2794 #ifdef CONFIG_COMPAT
2795     HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2796     HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2797     /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2798     HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2799     HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2800     HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2801     HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2802     HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2803     HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2804     HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2805 #endif
2806     {},
2807 };
2808 
2809 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2810 {
2811     switch (cap->hwcap_type) {
2812     case CAP_HWCAP:
2813         cpu_set_feature(cap->hwcap);
2814         break;
2815 #ifdef CONFIG_COMPAT
2816     case CAP_COMPAT_HWCAP:
2817         compat_elf_hwcap |= (u32)cap->hwcap;
2818         break;
2819     case CAP_COMPAT_HWCAP2:
2820         compat_elf_hwcap2 |= (u32)cap->hwcap;
2821         break;
2822 #endif
2823     default:
2824         WARN_ON(1);
2825         break;
2826     }
2827 }
2828 
2829 /* Check if we have a particular HWCAP enabled */
2830 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2831 {
2832     bool rc;
2833 
2834     switch (cap->hwcap_type) {
2835     case CAP_HWCAP:
2836         rc = cpu_have_feature(cap->hwcap);
2837         break;
2838 #ifdef CONFIG_COMPAT
2839     case CAP_COMPAT_HWCAP:
2840         rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2841         break;
2842     case CAP_COMPAT_HWCAP2:
2843         rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2844         break;
2845 #endif
2846     default:
2847         WARN_ON(1);
2848         rc = false;
2849     }
2850 
2851     return rc;
2852 }
2853 
2854 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2855 {
2856     /* We support emulation of accesses to CPU ID feature registers */
2857     cpu_set_named_feature(CPUID);
2858     for (; hwcaps->matches; hwcaps++)
2859         if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2860             cap_set_elf_hwcap(hwcaps);
2861 }
2862 
2863 static void update_cpu_capabilities(u16 scope_mask)
2864 {
2865     int i;
2866     const struct arm64_cpu_capabilities *caps;
2867 
2868     scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2869     for (i = 0; i < ARM64_NCAPS; i++) {
2870         caps = cpu_hwcaps_ptrs[i];
2871         if (!caps || !(caps->type & scope_mask) ||
2872             cpus_have_cap(caps->capability) ||
2873             !caps->matches(caps, cpucap_default_scope(caps)))
2874             continue;
2875 
2876         if (caps->desc)
2877             pr_info("detected: %s\n", caps->desc);
2878         cpus_set_cap(caps->capability);
2879 
2880         if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2881             set_bit(caps->capability, boot_capabilities);
2882     }
2883 }
2884 
2885 /*
2886  * Enable all the available capabilities on this CPU. The capabilities
2887  * with BOOT_CPU scope are handled separately and hence skipped here.
2888  */
2889 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2890 {
2891     int i;
2892     u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2893 
2894     for_each_available_cap(i) {
2895         const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2896 
2897         if (WARN_ON(!cap))
2898             continue;
2899 
2900         if (!(cap->type & non_boot_scope))
2901             continue;
2902 
2903         if (cap->cpu_enable)
2904             cap->cpu_enable(cap);
2905     }
2906     return 0;
2907 }
2908 
2909 /*
2910  * Run through the enabled capabilities and enable() it on all active
2911  * CPUs
2912  */
2913 static void __init enable_cpu_capabilities(u16 scope_mask)
2914 {
2915     int i;
2916     const struct arm64_cpu_capabilities *caps;
2917     bool boot_scope;
2918 
2919     scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2920     boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2921 
2922     for (i = 0; i < ARM64_NCAPS; i++) {
2923         unsigned int num;
2924 
2925         caps = cpu_hwcaps_ptrs[i];
2926         if (!caps || !(caps->type & scope_mask))
2927             continue;
2928         num = caps->capability;
2929         if (!cpus_have_cap(num))
2930             continue;
2931 
2932         /* Ensure cpus_have_const_cap(num) works */
2933         static_branch_enable(&cpu_hwcap_keys[num]);
2934 
2935         if (boot_scope && caps->cpu_enable)
2936             /*
2937              * Capabilities with SCOPE_BOOT_CPU scope are finalised
2938              * before any secondary CPU boots. Thus, each secondary
2939              * will enable the capability as appropriate via
2940              * check_local_cpu_capabilities(). The only exception is
2941              * the boot CPU, for which the capability must be
2942              * enabled here. This approach avoids costly
2943              * stop_machine() calls for this case.
2944              */
2945             caps->cpu_enable(caps);
2946     }
2947 
2948     /*
2949      * For all non-boot scope capabilities, use stop_machine()
2950      * as it schedules the work allowing us to modify PSTATE,
2951      * instead of on_each_cpu() which uses an IPI, giving us a
2952      * PSTATE that disappears when we return.
2953      */
2954     if (!boot_scope)
2955         stop_machine(cpu_enable_non_boot_scope_capabilities,
2956                  NULL, cpu_online_mask);
2957 }
2958 
2959 /*
2960  * Run through the list of capabilities to check for conflicts.
2961  * If the system has already detected a capability, take necessary
2962  * action on this CPU.
2963  */
2964 static void verify_local_cpu_caps(u16 scope_mask)
2965 {
2966     int i;
2967     bool cpu_has_cap, system_has_cap;
2968     const struct arm64_cpu_capabilities *caps;
2969 
2970     scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2971 
2972     for (i = 0; i < ARM64_NCAPS; i++) {
2973         caps = cpu_hwcaps_ptrs[i];
2974         if (!caps || !(caps->type & scope_mask))
2975             continue;
2976 
2977         cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2978         system_has_cap = cpus_have_cap(caps->capability);
2979 
2980         if (system_has_cap) {
2981             /*
2982              * Check if the new CPU misses an advertised feature,
2983              * which is not safe to miss.
2984              */
2985             if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2986                 break;
2987             /*
2988              * We have to issue cpu_enable() irrespective of
2989              * whether the CPU has it or not, as it is enabeld
2990              * system wide. It is upto the call back to take
2991              * appropriate action on this CPU.
2992              */
2993             if (caps->cpu_enable)
2994                 caps->cpu_enable(caps);
2995         } else {
2996             /*
2997              * Check if the CPU has this capability if it isn't
2998              * safe to have when the system doesn't.
2999              */
3000             if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3001                 break;
3002         }
3003     }
3004 
3005     if (i < ARM64_NCAPS) {
3006         pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3007             smp_processor_id(), caps->capability,
3008             caps->desc, system_has_cap, cpu_has_cap);
3009 
3010         if (cpucap_panic_on_conflict(caps))
3011             cpu_panic_kernel();
3012         else
3013             cpu_die_early();
3014     }
3015 }
3016 
3017 /*
3018  * Check for CPU features that are used in early boot
3019  * based on the Boot CPU value.
3020  */
3021 static void check_early_cpu_features(void)
3022 {
3023     verify_cpu_asid_bits();
3024 
3025     verify_local_cpu_caps(SCOPE_BOOT_CPU);
3026 }
3027 
3028 static void
3029 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3030 {
3031 
3032     for (; caps->matches; caps++)
3033         if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3034             pr_crit("CPU%d: missing HWCAP: %s\n",
3035                     smp_processor_id(), caps->desc);
3036             cpu_die_early();
3037         }
3038 }
3039 
3040 static void verify_local_elf_hwcaps(void)
3041 {
3042     __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3043 
3044     if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3045         __verify_local_elf_hwcaps(compat_elf_hwcaps);
3046 }
3047 
3048 static void verify_sve_features(void)
3049 {
3050     u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
3051     u64 zcr = read_zcr_features();
3052 
3053     unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
3054     unsigned int len = zcr & ZCR_ELx_LEN_MASK;
3055 
3056     if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
3057         pr_crit("CPU%d: SVE: vector length support mismatch\n",
3058             smp_processor_id());
3059         cpu_die_early();
3060     }
3061 
3062     /* Add checks on other ZCR bits here if necessary */
3063 }
3064 
3065 static void verify_sme_features(void)
3066 {
3067     u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
3068     u64 smcr = read_smcr_features();
3069 
3070     unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
3071     unsigned int len = smcr & SMCR_ELx_LEN_MASK;
3072 
3073     if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
3074         pr_crit("CPU%d: SME: vector length support mismatch\n",
3075             smp_processor_id());
3076         cpu_die_early();
3077     }
3078 
3079     /* Add checks on other SMCR bits here if necessary */
3080 }
3081 
3082 static void verify_hyp_capabilities(void)
3083 {
3084     u64 safe_mmfr1, mmfr0, mmfr1;
3085     int parange, ipa_max;
3086     unsigned int safe_vmid_bits, vmid_bits;
3087 
3088     if (!IS_ENABLED(CONFIG_KVM))
3089         return;
3090 
3091     safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3092     mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3093     mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3094 
3095     /* Verify VMID bits */
3096     safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3097     vmid_bits = get_vmid_bits(mmfr1);
3098     if (vmid_bits < safe_vmid_bits) {
3099         pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3100         cpu_die_early();
3101     }
3102 
3103     /* Verify IPA range */
3104     parange = cpuid_feature_extract_unsigned_field(mmfr0,
3105                 ID_AA64MMFR0_PARANGE_SHIFT);
3106     ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3107     if (ipa_max < get_kvm_ipa_limit()) {
3108         pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3109         cpu_die_early();
3110     }
3111 }
3112 
3113 /*
3114  * Run through the enabled system capabilities and enable() it on this CPU.
3115  * The capabilities were decided based on the available CPUs at the boot time.
3116  * Any new CPU should match the system wide status of the capability. If the
3117  * new CPU doesn't have a capability which the system now has enabled, we
3118  * cannot do anything to fix it up and could cause unexpected failures. So
3119  * we park the CPU.
3120  */
3121 static void verify_local_cpu_capabilities(void)
3122 {
3123     /*
3124      * The capabilities with SCOPE_BOOT_CPU are checked from
3125      * check_early_cpu_features(), as they need to be verified
3126      * on all secondary CPUs.
3127      */
3128     verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3129     verify_local_elf_hwcaps();
3130 
3131     if (system_supports_sve())
3132         verify_sve_features();
3133 
3134     if (system_supports_sme())
3135         verify_sme_features();
3136 
3137     if (is_hyp_mode_available())
3138         verify_hyp_capabilities();
3139 }
3140 
3141 void check_local_cpu_capabilities(void)
3142 {
3143     /*
3144      * All secondary CPUs should conform to the early CPU features
3145      * in use by the kernel based on boot CPU.
3146      */
3147     check_early_cpu_features();
3148 
3149     /*
3150      * If we haven't finalised the system capabilities, this CPU gets
3151      * a chance to update the errata work arounds and local features.
3152      * Otherwise, this CPU should verify that it has all the system
3153      * advertised capabilities.
3154      */
3155     if (!system_capabilities_finalized())
3156         update_cpu_capabilities(SCOPE_LOCAL_CPU);
3157     else
3158         verify_local_cpu_capabilities();
3159 }
3160 
3161 static void __init setup_boot_cpu_capabilities(void)
3162 {
3163     /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3164     update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3165     /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3166     enable_cpu_capabilities(SCOPE_BOOT_CPU);
3167 }
3168 
3169 bool this_cpu_has_cap(unsigned int n)
3170 {
3171     if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3172         const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3173 
3174         if (cap)
3175             return cap->matches(cap, SCOPE_LOCAL_CPU);
3176     }
3177 
3178     return false;
3179 }
3180 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3181 
3182 /*
3183  * This helper function is used in a narrow window when,
3184  * - The system wide safe registers are set with all the SMP CPUs and,
3185  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
3186  * In all other cases cpus_have_{const_}cap() should be used.
3187  */
3188 static bool __maybe_unused __system_matches_cap(unsigned int n)
3189 {
3190     if (n < ARM64_NCAPS) {
3191         const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3192 
3193         if (cap)
3194             return cap->matches(cap, SCOPE_SYSTEM);
3195     }
3196     return false;
3197 }
3198 
3199 void cpu_set_feature(unsigned int num)
3200 {
3201     set_bit(num, elf_hwcap);
3202 }
3203 
3204 bool cpu_have_feature(unsigned int num)
3205 {
3206     return test_bit(num, elf_hwcap);
3207 }
3208 EXPORT_SYMBOL_GPL(cpu_have_feature);
3209 
3210 unsigned long cpu_get_elf_hwcap(void)
3211 {
3212     /*
3213      * We currently only populate the first 32 bits of AT_HWCAP. Please
3214      * note that for userspace compatibility we guarantee that bits 62
3215      * and 63 will always be returned as 0.
3216      */
3217     return elf_hwcap[0];
3218 }
3219 
3220 unsigned long cpu_get_elf_hwcap2(void)
3221 {
3222     return elf_hwcap[1];
3223 }
3224 
3225 static void __init setup_system_capabilities(void)
3226 {
3227     /*
3228      * We have finalised the system-wide safe feature
3229      * registers, finalise the capabilities that depend
3230      * on it. Also enable all the available capabilities,
3231      * that are not enabled already.
3232      */
3233     update_cpu_capabilities(SCOPE_SYSTEM);
3234     enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3235 }
3236 
3237 void __init setup_cpu_features(void)
3238 {
3239     u32 cwg;
3240 
3241     setup_system_capabilities();
3242     setup_elf_hwcaps(arm64_elf_hwcaps);
3243 
3244     if (system_supports_32bit_el0()) {
3245         setup_elf_hwcaps(compat_elf_hwcaps);
3246         elf_hwcap_fixup();
3247     }
3248 
3249     if (system_uses_ttbr0_pan())
3250         pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3251 
3252     sve_setup();
3253     sme_setup();
3254     minsigstksz_setup();
3255 
3256     /* Advertise that we have computed the system capabilities */
3257     finalize_system_capabilities();
3258 
3259     /*
3260      * Check for sane CTR_EL0.CWG value.
3261      */
3262     cwg = cache_type_cwg();
3263     if (!cwg)
3264         pr_warn("No Cache Writeback Granule information, assuming %d\n",
3265             ARCH_DMA_MINALIGN);
3266 }
3267 
3268 static int enable_mismatched_32bit_el0(unsigned int cpu)
3269 {
3270     /*
3271      * The first 32-bit-capable CPU we detected and so can no longer
3272      * be offlined by userspace. -1 indicates we haven't yet onlined
3273      * a 32-bit-capable CPU.
3274      */
3275     static int lucky_winner = -1;
3276 
3277     struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3278     bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3279 
3280     if (cpu_32bit) {
3281         cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3282         static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3283     }
3284 
3285     if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3286         return 0;
3287 
3288     if (lucky_winner >= 0)
3289         return 0;
3290 
3291     /*
3292      * We've detected a mismatch. We need to keep one of our CPUs with
3293      * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3294      * every CPU in the system for a 32-bit task.
3295      */
3296     lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3297                              cpu_active_mask);
3298     get_cpu_device(lucky_winner)->offline_disabled = true;
3299     setup_elf_hwcaps(compat_elf_hwcaps);
3300     elf_hwcap_fixup();
3301     pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3302         cpu, lucky_winner);
3303     return 0;
3304 }
3305 
3306 static int __init init_32bit_el0_mask(void)
3307 {
3308     if (!allow_mismatched_32bit_el0)
3309         return 0;
3310 
3311     if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3312         return -ENOMEM;
3313 
3314     return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3315                  "arm64/mismatched_32bit_el0:online",
3316                  enable_mismatched_32bit_el0, NULL);
3317 }
3318 subsys_initcall_sync(init_32bit_el0_mask);
3319 
3320 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3321 {
3322     cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir);
3323 }
3324 
3325 /*
3326  * We emulate only the following system register space.
3327  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
3328  * See Table C5-6 System instruction encodings for System register accesses,
3329  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3330  */
3331 static inline bool __attribute_const__ is_emulated(u32 id)
3332 {
3333     return (sys_reg_Op0(id) == 0x3 &&
3334         sys_reg_CRn(id) == 0x0 &&
3335         sys_reg_Op1(id) == 0x0 &&
3336         (sys_reg_CRm(id) == 0 ||
3337          ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
3338 }
3339 
3340 /*
3341  * With CRm == 0, reg should be one of :
3342  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3343  */
3344 static inline int emulate_id_reg(u32 id, u64 *valp)
3345 {
3346     switch (id) {
3347     case SYS_MIDR_EL1:
3348         *valp = read_cpuid_id();
3349         break;
3350     case SYS_MPIDR_EL1:
3351         *valp = SYS_MPIDR_SAFE_VAL;
3352         break;
3353     case SYS_REVIDR_EL1:
3354         /* IMPLEMENTATION DEFINED values are emulated with 0 */
3355         *valp = 0;
3356         break;
3357     default:
3358         return -EINVAL;
3359     }
3360 
3361     return 0;
3362 }
3363 
3364 static int emulate_sys_reg(u32 id, u64 *valp)
3365 {
3366     struct arm64_ftr_reg *regp;
3367 
3368     if (!is_emulated(id))
3369         return -EINVAL;
3370 
3371     if (sys_reg_CRm(id) == 0)
3372         return emulate_id_reg(id, valp);
3373 
3374     regp = get_arm64_ftr_reg_nowarn(id);
3375     if (regp)
3376         *valp = arm64_ftr_reg_user_value(regp);
3377     else
3378         /*
3379          * The untracked registers are either IMPLEMENTATION DEFINED
3380          * (e.g, ID_AFR0_EL1) or reserved RAZ.
3381          */
3382         *valp = 0;
3383     return 0;
3384 }
3385 
3386 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3387 {
3388     int rc;
3389     u64 val;
3390 
3391     rc = emulate_sys_reg(sys_reg, &val);
3392     if (!rc) {
3393         pt_regs_write_reg(regs, rt, val);
3394         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3395     }
3396     return rc;
3397 }
3398 
3399 static int emulate_mrs(struct pt_regs *regs, u32 insn)
3400 {
3401     u32 sys_reg, rt;
3402 
3403     /*
3404      * sys_reg values are defined as used in mrs/msr instruction.
3405      * shift the imm value to get the encoding.
3406      */
3407     sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3408     rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3409     return do_emulate_mrs(regs, sys_reg, rt);
3410 }
3411 
3412 static struct undef_hook mrs_hook = {
3413     .instr_mask = 0xffff0000,
3414     .instr_val  = 0xd5380000,
3415     .pstate_mask = PSR_AA32_MODE_MASK,
3416     .pstate_val = PSR_MODE_EL0t,
3417     .fn = emulate_mrs,
3418 };
3419 
3420 static int __init enable_mrs_emulation(void)
3421 {
3422     register_undef_hook(&mrs_hook);
3423     return 0;
3424 }
3425 
3426 core_initcall(enable_mrs_emulation);
3427 
3428 enum mitigation_state arm64_get_meltdown_state(void)
3429 {
3430     if (__meltdown_safe)
3431         return SPECTRE_UNAFFECTED;
3432 
3433     if (arm64_kernel_unmapped_at_el0())
3434         return SPECTRE_MITIGATED;
3435 
3436     return SPECTRE_VULNERABLE;
3437 }
3438 
3439 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3440               char *buf)
3441 {
3442     switch (arm64_get_meltdown_state()) {
3443     case SPECTRE_UNAFFECTED:
3444         return sprintf(buf, "Not affected\n");
3445 
3446     case SPECTRE_MITIGATED:
3447         return sprintf(buf, "Mitigation: PTI\n");
3448 
3449     default:
3450         return sprintf(buf, "Vulnerable\n");
3451     }
3452 }