Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0-only */
0002 /*
0003  * Copyright (C) 2012,2013 - ARM Ltd
0004  * Author: Marc Zyngier <marc.zyngier@arm.com>
0005  *
0006  * Derived from arch/arm/include/asm/kvm_host.h:
0007  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
0008  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
0009  */
0010 
0011 #ifndef __ARM64_KVM_HOST_H__
0012 #define __ARM64_KVM_HOST_H__
0013 
0014 #include <linux/arm-smccc.h>
0015 #include <linux/bitmap.h>
0016 #include <linux/types.h>
0017 #include <linux/jump_label.h>
0018 #include <linux/kvm_types.h>
0019 #include <linux/percpu.h>
0020 #include <linux/psci.h>
0021 #include <asm/arch_gicv3.h>
0022 #include <asm/barrier.h>
0023 #include <asm/cpufeature.h>
0024 #include <asm/cputype.h>
0025 #include <asm/daifflags.h>
0026 #include <asm/fpsimd.h>
0027 #include <asm/kvm.h>
0028 #include <asm/kvm_asm.h>
0029 
0030 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
0031 
0032 #define KVM_HALT_POLL_NS_DEFAULT 500000
0033 
0034 #include <kvm/arm_vgic.h>
0035 #include <kvm/arm_arch_timer.h>
0036 #include <kvm/arm_pmu.h>
0037 
0038 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
0039 
0040 #define KVM_VCPU_MAX_FEATURES 7
0041 
0042 #define KVM_REQ_SLEEP \
0043     KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0044 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
0045 #define KVM_REQ_VCPU_RESET  KVM_ARCH_REQ(2)
0046 #define KVM_REQ_RECORD_STEAL    KVM_ARCH_REQ(3)
0047 #define KVM_REQ_RELOAD_GICv4    KVM_ARCH_REQ(4)
0048 #define KVM_REQ_RELOAD_PMU  KVM_ARCH_REQ(5)
0049 #define KVM_REQ_SUSPEND     KVM_ARCH_REQ(6)
0050 
0051 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
0052                      KVM_DIRTY_LOG_INITIALLY_SET)
0053 
0054 #define KVM_HAVE_MMU_RWLOCK
0055 
0056 /*
0057  * Mode of operation configurable with kvm-arm.mode early param.
0058  * See Documentation/admin-guide/kernel-parameters.txt for more information.
0059  */
0060 enum kvm_mode {
0061     KVM_MODE_DEFAULT,
0062     KVM_MODE_PROTECTED,
0063     KVM_MODE_NONE,
0064 };
0065 enum kvm_mode kvm_get_mode(void);
0066 
0067 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
0068 
0069 extern unsigned int kvm_sve_max_vl;
0070 int kvm_arm_init_sve(void);
0071 
0072 u32 __attribute_const__ kvm_target_cpu(void);
0073 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
0074 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
0075 
0076 struct kvm_vmid {
0077     atomic64_t id;
0078 };
0079 
0080 struct kvm_s2_mmu {
0081     struct kvm_vmid vmid;
0082 
0083     /*
0084      * stage2 entry level table
0085      *
0086      * Two kvm_s2_mmu structures in the same VM can point to the same
0087      * pgd here.  This happens when running a guest using a
0088      * translation regime that isn't affected by its own stage-2
0089      * translation, such as a non-VHE hypervisor running at vEL2, or
0090      * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
0091      * canonical stage-2 page tables.
0092      */
0093     phys_addr_t pgd_phys;
0094     struct kvm_pgtable *pgt;
0095 
0096     /* The last vcpu id that ran on each physical CPU */
0097     int __percpu *last_vcpu_ran;
0098 
0099     struct kvm_arch *arch;
0100 };
0101 
0102 struct kvm_arch_memory_slot {
0103 };
0104 
0105 /**
0106  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
0107  *
0108  * @std_bmap: Bitmap of standard secure service calls
0109  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
0110  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
0111  */
0112 struct kvm_smccc_features {
0113     unsigned long std_bmap;
0114     unsigned long std_hyp_bmap;
0115     unsigned long vendor_hyp_bmap;
0116 };
0117 
0118 struct kvm_arch {
0119     struct kvm_s2_mmu mmu;
0120 
0121     /* VTCR_EL2 value for this VM */
0122     u64    vtcr;
0123 
0124     /* Interrupt controller */
0125     struct vgic_dist    vgic;
0126 
0127     /* Mandated version of PSCI */
0128     u32 psci_version;
0129 
0130     /*
0131      * If we encounter a data abort without valid instruction syndrome
0132      * information, report this to user space.  User space can (and
0133      * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
0134      * supported.
0135      */
0136 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER  0
0137     /* Memory Tagging Extension enabled for the guest */
0138 #define KVM_ARCH_FLAG_MTE_ENABLED           1
0139     /* At least one vCPU has ran in the VM */
0140 #define KVM_ARCH_FLAG_HAS_RAN_ONCE          2
0141     /*
0142      * The following two bits are used to indicate the guest's EL1
0143      * register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT
0144      * bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set.
0145      * Otherwise, the guest's EL1 register width has not yet been
0146      * determined yet.
0147      */
0148 #define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED      3
0149 #define KVM_ARCH_FLAG_EL1_32BIT             4
0150     /* PSCI SYSTEM_SUSPEND enabled for the guest */
0151 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED        5
0152 
0153     unsigned long flags;
0154 
0155     /*
0156      * VM-wide PMU filter, implemented as a bitmap and big enough for
0157      * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
0158      */
0159     unsigned long *pmu_filter;
0160     struct arm_pmu *arm_pmu;
0161 
0162     cpumask_var_t supported_cpus;
0163 
0164     u8 pfr0_csv2;
0165     u8 pfr0_csv3;
0166 
0167     /* Hypercall features firmware registers' descriptor */
0168     struct kvm_smccc_features smccc_feat;
0169 };
0170 
0171 struct kvm_vcpu_fault_info {
0172     u64 esr_el2;        /* Hyp Syndrom Register */
0173     u64 far_el2;        /* Hyp Fault Address Register */
0174     u64 hpfar_el2;      /* Hyp IPA Fault Address Register */
0175     u64 disr_el1;       /* Deferred [SError] Status Register */
0176 };
0177 
0178 enum vcpu_sysreg {
0179     __INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
0180     MPIDR_EL1,  /* MultiProcessor Affinity Register */
0181     CSSELR_EL1, /* Cache Size Selection Register */
0182     SCTLR_EL1,  /* System Control Register */
0183     ACTLR_EL1,  /* Auxiliary Control Register */
0184     CPACR_EL1,  /* Coprocessor Access Control */
0185     ZCR_EL1,    /* SVE Control */
0186     TTBR0_EL1,  /* Translation Table Base Register 0 */
0187     TTBR1_EL1,  /* Translation Table Base Register 1 */
0188     TCR_EL1,    /* Translation Control Register */
0189     ESR_EL1,    /* Exception Syndrome Register */
0190     AFSR0_EL1,  /* Auxiliary Fault Status Register 0 */
0191     AFSR1_EL1,  /* Auxiliary Fault Status Register 1 */
0192     FAR_EL1,    /* Fault Address Register */
0193     MAIR_EL1,   /* Memory Attribute Indirection Register */
0194     VBAR_EL1,   /* Vector Base Address Register */
0195     CONTEXTIDR_EL1, /* Context ID Register */
0196     TPIDR_EL0,  /* Thread ID, User R/W */
0197     TPIDRRO_EL0,    /* Thread ID, User R/O */
0198     TPIDR_EL1,  /* Thread ID, Privileged */
0199     AMAIR_EL1,  /* Aux Memory Attribute Indirection Register */
0200     CNTKCTL_EL1,    /* Timer Control Register (EL1) */
0201     PAR_EL1,    /* Physical Address Register */
0202     MDSCR_EL1,  /* Monitor Debug System Control Register */
0203     MDCCINT_EL1,    /* Monitor Debug Comms Channel Interrupt Enable Reg */
0204     OSLSR_EL1,  /* OS Lock Status Register */
0205     DISR_EL1,   /* Deferred Interrupt Status Register */
0206 
0207     /* Performance Monitors Registers */
0208     PMCR_EL0,   /* Control Register */
0209     PMSELR_EL0, /* Event Counter Selection Register */
0210     PMEVCNTR0_EL0,  /* Event Counter Register (0-30) */
0211     PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
0212     PMCCNTR_EL0,    /* Cycle Counter Register */
0213     PMEVTYPER0_EL0, /* Event Type Register (0-30) */
0214     PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
0215     PMCCFILTR_EL0,  /* Cycle Count Filter Register */
0216     PMCNTENSET_EL0, /* Count Enable Set Register */
0217     PMINTENSET_EL1, /* Interrupt Enable Set Register */
0218     PMOVSSET_EL0,   /* Overflow Flag Status Set Register */
0219     PMUSERENR_EL0,  /* User Enable Register */
0220 
0221     /* Pointer Authentication Registers in a strict increasing order. */
0222     APIAKEYLO_EL1,
0223     APIAKEYHI_EL1,
0224     APIBKEYLO_EL1,
0225     APIBKEYHI_EL1,
0226     APDAKEYLO_EL1,
0227     APDAKEYHI_EL1,
0228     APDBKEYLO_EL1,
0229     APDBKEYHI_EL1,
0230     APGAKEYLO_EL1,
0231     APGAKEYHI_EL1,
0232 
0233     ELR_EL1,
0234     SP_EL1,
0235     SPSR_EL1,
0236 
0237     CNTVOFF_EL2,
0238     CNTV_CVAL_EL0,
0239     CNTV_CTL_EL0,
0240     CNTP_CVAL_EL0,
0241     CNTP_CTL_EL0,
0242 
0243     /* Memory Tagging Extension registers */
0244     RGSR_EL1,   /* Random Allocation Tag Seed Register */
0245     GCR_EL1,    /* Tag Control Register */
0246     TFSR_EL1,   /* Tag Fault Status Register (EL1) */
0247     TFSRE0_EL1, /* Tag Fault Status Register (EL0) */
0248 
0249     /* 32bit specific registers. Keep them at the end of the range */
0250     DACR32_EL2, /* Domain Access Control Register */
0251     IFSR32_EL2, /* Instruction Fault Status Register */
0252     FPEXC32_EL2,    /* Floating-Point Exception Control Register */
0253     DBGVCR32_EL2,   /* Debug Vector Catch Register */
0254 
0255     NR_SYS_REGS /* Nothing after this line! */
0256 };
0257 
0258 struct kvm_cpu_context {
0259     struct user_pt_regs regs;   /* sp = sp_el0 */
0260 
0261     u64 spsr_abt;
0262     u64 spsr_und;
0263     u64 spsr_irq;
0264     u64 spsr_fiq;
0265 
0266     struct user_fpsimd_state fp_regs;
0267 
0268     u64 sys_regs[NR_SYS_REGS];
0269 
0270     struct kvm_vcpu *__hyp_running_vcpu;
0271 };
0272 
0273 struct kvm_host_data {
0274     struct kvm_cpu_context host_ctxt;
0275 };
0276 
0277 struct kvm_host_psci_config {
0278     /* PSCI version used by host. */
0279     u32 version;
0280 
0281     /* Function IDs used by host if version is v0.1. */
0282     struct psci_0_1_function_ids function_ids_0_1;
0283 
0284     bool psci_0_1_cpu_suspend_implemented;
0285     bool psci_0_1_cpu_on_implemented;
0286     bool psci_0_1_cpu_off_implemented;
0287     bool psci_0_1_migrate_implemented;
0288 };
0289 
0290 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
0291 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
0292 
0293 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
0294 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
0295 
0296 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
0297 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
0298 
0299 struct vcpu_reset_state {
0300     unsigned long   pc;
0301     unsigned long   r0;
0302     bool        be;
0303     bool        reset;
0304 };
0305 
0306 struct kvm_vcpu_arch {
0307     struct kvm_cpu_context ctxt;
0308 
0309     /* Guest floating point state */
0310     void *sve_state;
0311     unsigned int sve_max_vl;
0312     u64 svcr;
0313 
0314     /* Stage 2 paging state used by the hardware on next switch */
0315     struct kvm_s2_mmu *hw_mmu;
0316 
0317     /* Values of trap registers for the guest. */
0318     u64 hcr_el2;
0319     u64 mdcr_el2;
0320     u64 cptr_el2;
0321 
0322     /* Values of trap registers for the host before guest entry. */
0323     u64 mdcr_el2_host;
0324 
0325     /* Exception Information */
0326     struct kvm_vcpu_fault_info fault;
0327 
0328     /* Ownership of the FP regs */
0329     enum {
0330         FP_STATE_FREE,
0331         FP_STATE_HOST_OWNED,
0332         FP_STATE_GUEST_OWNED,
0333     } fp_state;
0334 
0335     /* Configuration flags, set once and for all before the vcpu can run */
0336     u8 cflags;
0337 
0338     /* Input flags to the hypervisor code, potentially cleared after use */
0339     u8 iflags;
0340 
0341     /* State flags for kernel bookkeeping, unused by the hypervisor code */
0342     u8 sflags;
0343 
0344     /*
0345      * Don't run the guest (internal implementation need).
0346      *
0347      * Contrary to the flags above, this is set/cleared outside of
0348      * a vcpu context, and thus cannot be mixed with the flags
0349      * themselves (or the flag accesses need to be made atomic).
0350      */
0351     bool pause;
0352 
0353     /*
0354      * We maintain more than a single set of debug registers to support
0355      * debugging the guest from the host and to maintain separate host and
0356      * guest state during world switches. vcpu_debug_state are the debug
0357      * registers of the vcpu as the guest sees them.  host_debug_state are
0358      * the host registers which are saved and restored during
0359      * world switches. external_debug_state contains the debug
0360      * values we want to debug the guest. This is set via the
0361      * KVM_SET_GUEST_DEBUG ioctl.
0362      *
0363      * debug_ptr points to the set of debug registers that should be loaded
0364      * onto the hardware when running the guest.
0365      */
0366     struct kvm_guest_debug_arch *debug_ptr;
0367     struct kvm_guest_debug_arch vcpu_debug_state;
0368     struct kvm_guest_debug_arch external_debug_state;
0369 
0370     struct user_fpsimd_state *host_fpsimd_state;    /* hyp VA */
0371     struct task_struct *parent_task;
0372 
0373     struct {
0374         /* {Break,watch}point registers */
0375         struct kvm_guest_debug_arch regs;
0376         /* Statistical profiling extension */
0377         u64 pmscr_el1;
0378         /* Self-hosted trace */
0379         u64 trfcr_el1;
0380     } host_debug_state;
0381 
0382     /* VGIC state */
0383     struct vgic_cpu vgic_cpu;
0384     struct arch_timer_cpu timer_cpu;
0385     struct kvm_pmu pmu;
0386 
0387     /*
0388      * Guest registers we preserve during guest debugging.
0389      *
0390      * These shadow registers are updated by the kvm_handle_sys_reg
0391      * trap handler if the guest accesses or updates them while we
0392      * are using guest debug.
0393      */
0394     struct {
0395         u32 mdscr_el1;
0396     } guest_debug_preserved;
0397 
0398     /* vcpu power state */
0399     struct kvm_mp_state mp_state;
0400 
0401     /* Cache some mmu pages needed inside spinlock regions */
0402     struct kvm_mmu_memory_cache mmu_page_cache;
0403 
0404     /* Target CPU and feature flags */
0405     int target;
0406     DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
0407 
0408     /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
0409     u64 vsesr_el2;
0410 
0411     /* Additional reset state */
0412     struct vcpu_reset_state reset_state;
0413 
0414     /* Guest PV state */
0415     struct {
0416         u64 last_steal;
0417         gpa_t base;
0418     } steal;
0419 };
0420 
0421 /*
0422  * Each 'flag' is composed of a comma-separated triplet:
0423  *
0424  * - the flag-set it belongs to in the vcpu->arch structure
0425  * - the value for that flag
0426  * - the mask for that flag
0427  *
0428  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
0429  * unpack_vcpu_flag() extract the flag value from the triplet for
0430  * direct use outside of the flag accessors.
0431  */
0432 #define __vcpu_single_flag(_set, _f)    _set, (_f), (_f)
0433 
0434 #define __unpack_flag(_set, _f, _m) _f
0435 #define unpack_vcpu_flag(...)       __unpack_flag(__VA_ARGS__)
0436 
0437 #define __build_check_flag(v, flagset, f, m)            \
0438     do {                            \
0439         typeof(v->arch.flagset) *_fset;         \
0440                                 \
0441         /* Check that the flags fit in the mask */  \
0442         BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
0443         /* Check that the flags fit in the type */  \
0444         BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
0445     } while (0)
0446 
0447 #define __vcpu_get_flag(v, flagset, f, m)           \
0448     ({                          \
0449         __build_check_flag(v, flagset, f, m);       \
0450                                 \
0451         v->arch.flagset & (m);              \
0452     })
0453 
0454 #define __vcpu_set_flag(v, flagset, f, m)           \
0455     do {                            \
0456         typeof(v->arch.flagset) *fset;          \
0457                                 \
0458         __build_check_flag(v, flagset, f, m);       \
0459                                 \
0460         fset = &v->arch.flagset;            \
0461         if (HWEIGHT(m) > 1)             \
0462             *fset &= ~(m);              \
0463         *fset |= (f);                   \
0464     } while (0)
0465 
0466 #define __vcpu_clear_flag(v, flagset, f, m)         \
0467     do {                            \
0468         typeof(v->arch.flagset) *fset;          \
0469                                 \
0470         __build_check_flag(v, flagset, f, m);       \
0471                                 \
0472         fset = &v->arch.flagset;            \
0473         *fset &= ~(m);                  \
0474     } while (0)
0475 
0476 #define vcpu_get_flag(v, ...)   __vcpu_get_flag((v), __VA_ARGS__)
0477 #define vcpu_set_flag(v, ...)   __vcpu_set_flag((v), __VA_ARGS__)
0478 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
0479 
0480 /* SVE exposed to guest */
0481 #define GUEST_HAS_SVE       __vcpu_single_flag(cflags, BIT(0))
0482 /* SVE config completed */
0483 #define VCPU_SVE_FINALIZED  __vcpu_single_flag(cflags, BIT(1))
0484 /* PTRAUTH exposed to guest */
0485 #define GUEST_HAS_PTRAUTH   __vcpu_single_flag(cflags, BIT(2))
0486 
0487 /* Exception pending */
0488 #define PENDING_EXCEPTION   __vcpu_single_flag(iflags, BIT(0))
0489 /*
0490  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
0491  * be set together with an exception...
0492  */
0493 #define INCREMENT_PC        __vcpu_single_flag(iflags, BIT(1))
0494 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
0495 #define EXCEPT_MASK     __vcpu_single_flag(iflags, GENMASK(3, 1))
0496 
0497 /* Helpers to encode exceptions with minimum fuss */
0498 #define __EXCEPT_MASK_VAL   unpack_vcpu_flag(EXCEPT_MASK)
0499 #define __EXCEPT_SHIFT      __builtin_ctzl(__EXCEPT_MASK_VAL)
0500 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
0501 
0502 /*
0503  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
0504  * values:
0505  *
0506  * For AArch32 EL1:
0507  */
0508 #define EXCEPT_AA32_UND     __vcpu_except_flags(0)
0509 #define EXCEPT_AA32_IABT    __vcpu_except_flags(1)
0510 #define EXCEPT_AA32_DABT    __vcpu_except_flags(2)
0511 /* For AArch64: */
0512 #define EXCEPT_AA64_EL1_SYNC    __vcpu_except_flags(0)
0513 #define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1)
0514 #define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2)
0515 #define EXCEPT_AA64_EL1_SERR    __vcpu_except_flags(3)
0516 /* For AArch64 with NV (one day): */
0517 #define EXCEPT_AA64_EL2_SYNC    __vcpu_except_flags(4)
0518 #define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5)
0519 #define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6)
0520 #define EXCEPT_AA64_EL2_SERR    __vcpu_except_flags(7)
0521 /* Guest debug is live */
0522 #define DEBUG_DIRTY     __vcpu_single_flag(iflags, BIT(4))
0523 /* Save SPE context if active  */
0524 #define DEBUG_STATE_SAVE_SPE    __vcpu_single_flag(iflags, BIT(5))
0525 /* Save TRBE context if active  */
0526 #define DEBUG_STATE_SAVE_TRBE   __vcpu_single_flag(iflags, BIT(6))
0527 
0528 /* SVE enabled for host EL0 */
0529 #define HOST_SVE_ENABLED    __vcpu_single_flag(sflags, BIT(0))
0530 /* SME enabled for EL0 */
0531 #define HOST_SME_ENABLED    __vcpu_single_flag(sflags, BIT(1))
0532 /* Physical CPU not in supported_cpus */
0533 #define ON_UNSUPPORTED_CPU  __vcpu_single_flag(sflags, BIT(2))
0534 /* WFIT instruction trapped */
0535 #define IN_WFIT         __vcpu_single_flag(sflags, BIT(3))
0536 /* vcpu system registers loaded on physical CPU */
0537 #define SYSREGS_ON_CPU      __vcpu_single_flag(sflags, BIT(4))
0538 
0539 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
0540 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +  \
0541                  sve_ffr_offset((vcpu)->arch.sve_max_vl))
0542 
0543 #define vcpu_sve_max_vq(vcpu)   sve_vq_from_vl((vcpu)->arch.sve_max_vl)
0544 
0545 #define vcpu_sve_state_size(vcpu) ({                    \
0546     size_t __size_ret;                      \
0547     unsigned int __vcpu_vq;                     \
0548                                     \
0549     if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {      \
0550         __size_ret = 0;                     \
0551     } else {                            \
0552         __vcpu_vq = vcpu_sve_max_vq(vcpu);          \
0553         __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);      \
0554     }                               \
0555                                     \
0556     __size_ret;                         \
0557 })
0558 
0559 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
0560                  KVM_GUESTDBG_USE_SW_BP | \
0561                  KVM_GUESTDBG_USE_HW | \
0562                  KVM_GUESTDBG_SINGLESTEP)
0563 
0564 #define vcpu_has_sve(vcpu) (system_supports_sve() &&            \
0565                 vcpu_get_flag(vcpu, GUEST_HAS_SVE))
0566 
0567 #ifdef CONFIG_ARM64_PTR_AUTH
0568 #define vcpu_has_ptrauth(vcpu)                      \
0569     ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||        \
0570       cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&       \
0571       vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
0572 #else
0573 #define vcpu_has_ptrauth(vcpu)      false
0574 #endif
0575 
0576 #define vcpu_on_unsupported_cpu(vcpu)                   \
0577     vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
0578 
0579 #define vcpu_set_on_unsupported_cpu(vcpu)               \
0580     vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
0581 
0582 #define vcpu_clear_on_unsupported_cpu(vcpu)             \
0583     vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
0584 
0585 #define vcpu_gp_regs(v)     (&(v)->arch.ctxt.regs)
0586 
0587 /*
0588  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
0589  * memory backed version of a register, and not the one most recently
0590  * accessed by a running VCPU.  For example, for userspace access or
0591  * for system registers that are never context switched, but only
0592  * emulated.
0593  */
0594 #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)])
0595 
0596 #define ctxt_sys_reg(c,r)   (*__ctxt_sys_reg(c,r))
0597 
0598 #define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
0599 
0600 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
0601 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
0602 
0603 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
0604 {
0605     /*
0606      * *** VHE ONLY ***
0607      *
0608      * System registers listed in the switch are not saved on every
0609      * exit from the guest but are only saved on vcpu_put.
0610      *
0611      * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
0612      * should never be listed below, because the guest cannot modify its
0613      * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
0614      * thread when emulating cross-VCPU communication.
0615      */
0616     if (!has_vhe())
0617         return false;
0618 
0619     switch (reg) {
0620     case CSSELR_EL1:    *val = read_sysreg_s(SYS_CSSELR_EL1);   break;
0621     case SCTLR_EL1:     *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
0622     case CPACR_EL1:     *val = read_sysreg_s(SYS_CPACR_EL12);   break;
0623     case TTBR0_EL1:     *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
0624     case TTBR1_EL1:     *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
0625     case TCR_EL1:       *val = read_sysreg_s(SYS_TCR_EL12); break;
0626     case ESR_EL1:       *val = read_sysreg_s(SYS_ESR_EL12); break;
0627     case AFSR0_EL1:     *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
0628     case AFSR1_EL1:     *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
0629     case FAR_EL1:       *val = read_sysreg_s(SYS_FAR_EL12); break;
0630     case MAIR_EL1:      *val = read_sysreg_s(SYS_MAIR_EL12);    break;
0631     case VBAR_EL1:      *val = read_sysreg_s(SYS_VBAR_EL12);    break;
0632     case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
0633     case TPIDR_EL0:     *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
0634     case TPIDRRO_EL0:   *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
0635     case TPIDR_EL1:     *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
0636     case AMAIR_EL1:     *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
0637     case CNTKCTL_EL1:   *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
0638     case ELR_EL1:       *val = read_sysreg_s(SYS_ELR_EL12); break;
0639     case PAR_EL1:       *val = read_sysreg_par();       break;
0640     case DACR32_EL2:    *val = read_sysreg_s(SYS_DACR32_EL2);   break;
0641     case IFSR32_EL2:    *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
0642     case DBGVCR32_EL2:  *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
0643     default:        return false;
0644     }
0645 
0646     return true;
0647 }
0648 
0649 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
0650 {
0651     /*
0652      * *** VHE ONLY ***
0653      *
0654      * System registers listed in the switch are not restored on every
0655      * entry to the guest but are only restored on vcpu_load.
0656      *
0657      * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
0658      * should never be listed below, because the MPIDR should only be set
0659      * once, before running the VCPU, and never changed later.
0660      */
0661     if (!has_vhe())
0662         return false;
0663 
0664     switch (reg) {
0665     case CSSELR_EL1:    write_sysreg_s(val, SYS_CSSELR_EL1);    break;
0666     case SCTLR_EL1:     write_sysreg_s(val, SYS_SCTLR_EL12);    break;
0667     case CPACR_EL1:     write_sysreg_s(val, SYS_CPACR_EL12);    break;
0668     case TTBR0_EL1:     write_sysreg_s(val, SYS_TTBR0_EL12);    break;
0669     case TTBR1_EL1:     write_sysreg_s(val, SYS_TTBR1_EL12);    break;
0670     case TCR_EL1:       write_sysreg_s(val, SYS_TCR_EL12);  break;
0671     case ESR_EL1:       write_sysreg_s(val, SYS_ESR_EL12);  break;
0672     case AFSR0_EL1:     write_sysreg_s(val, SYS_AFSR0_EL12);    break;
0673     case AFSR1_EL1:     write_sysreg_s(val, SYS_AFSR1_EL12);    break;
0674     case FAR_EL1:       write_sysreg_s(val, SYS_FAR_EL12);  break;
0675     case MAIR_EL1:      write_sysreg_s(val, SYS_MAIR_EL12); break;
0676     case VBAR_EL1:      write_sysreg_s(val, SYS_VBAR_EL12); break;
0677     case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
0678     case TPIDR_EL0:     write_sysreg_s(val, SYS_TPIDR_EL0); break;
0679     case TPIDRRO_EL0:   write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
0680     case TPIDR_EL1:     write_sysreg_s(val, SYS_TPIDR_EL1); break;
0681     case AMAIR_EL1:     write_sysreg_s(val, SYS_AMAIR_EL12);    break;
0682     case CNTKCTL_EL1:   write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
0683     case ELR_EL1:       write_sysreg_s(val, SYS_ELR_EL12);  break;
0684     case PAR_EL1:       write_sysreg_s(val, SYS_PAR_EL1);   break;
0685     case DACR32_EL2:    write_sysreg_s(val, SYS_DACR32_EL2);    break;
0686     case IFSR32_EL2:    write_sysreg_s(val, SYS_IFSR32_EL2);    break;
0687     case DBGVCR32_EL2:  write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
0688     default:        return false;
0689     }
0690 
0691     return true;
0692 }
0693 
0694 struct kvm_vm_stat {
0695     struct kvm_vm_stat_generic generic;
0696 };
0697 
0698 struct kvm_vcpu_stat {
0699     struct kvm_vcpu_stat_generic generic;
0700     u64 hvc_exit_stat;
0701     u64 wfe_exit_stat;
0702     u64 wfi_exit_stat;
0703     u64 mmio_exit_user;
0704     u64 mmio_exit_kernel;
0705     u64 signal_exits;
0706     u64 exits;
0707 };
0708 
0709 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
0710 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
0711 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
0712 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
0713 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
0714 
0715 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
0716 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
0717 
0718 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
0719                   struct kvm_vcpu_events *events);
0720 
0721 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
0722                   struct kvm_vcpu_events *events);
0723 
0724 #define KVM_ARCH_WANT_MMU_NOTIFIER
0725 
0726 void kvm_arm_halt_guest(struct kvm *kvm);
0727 void kvm_arm_resume_guest(struct kvm *kvm);
0728 
0729 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
0730 
0731 #ifndef __KVM_NVHE_HYPERVISOR__
0732 #define kvm_call_hyp_nvhe(f, ...)                       \
0733     ({                              \
0734         struct arm_smccc_res res;               \
0735                                     \
0736         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),       \
0737                   ##__VA_ARGS__, &res);         \
0738         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);           \
0739                                     \
0740         res.a1;                         \
0741     })
0742 
0743 /*
0744  * The couple of isb() below are there to guarantee the same behaviour
0745  * on VHE as on !VHE, where the eret to EL1 acts as a context
0746  * synchronization event.
0747  */
0748 #define kvm_call_hyp(f, ...)                        \
0749     do {                                \
0750         if (has_vhe()) {                    \
0751             f(__VA_ARGS__);                 \
0752             isb();                      \
0753         } else {                        \
0754             kvm_call_hyp_nvhe(f, ##__VA_ARGS__);        \
0755         }                           \
0756     } while(0)
0757 
0758 #define kvm_call_hyp_ret(f, ...)                    \
0759     ({                              \
0760         typeof(f(__VA_ARGS__)) ret;             \
0761                                     \
0762         if (has_vhe()) {                    \
0763             ret = f(__VA_ARGS__);               \
0764             isb();                      \
0765         } else {                        \
0766             ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);  \
0767         }                           \
0768                                     \
0769         ret;                            \
0770     })
0771 #else /* __KVM_NVHE_HYPERVISOR__ */
0772 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
0773 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
0774 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
0775 #endif /* __KVM_NVHE_HYPERVISOR__ */
0776 
0777 void force_vm_exit(const cpumask_t *mask);
0778 
0779 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
0780 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
0781 
0782 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
0783 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
0784 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
0785 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
0786 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
0787 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
0788 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
0789 
0790 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
0791 
0792 int kvm_sys_reg_table_init(void);
0793 
0794 /* MMIO helpers */
0795 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
0796 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
0797 
0798 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
0799 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
0800 
0801 /*
0802  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
0803  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
0804  * loaded is considered to be "in guest".
0805  */
0806 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
0807 {
0808     return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
0809 }
0810 
0811 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
0812 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
0813 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
0814 
0815 bool kvm_arm_pvtime_supported(void);
0816 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
0817                 struct kvm_device_attr *attr);
0818 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
0819                 struct kvm_device_attr *attr);
0820 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
0821                 struct kvm_device_attr *attr);
0822 
0823 extern unsigned int kvm_arm_vmid_bits;
0824 int kvm_arm_vmid_alloc_init(void);
0825 void kvm_arm_vmid_alloc_free(void);
0826 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
0827 void kvm_arm_vmid_clear_active(void);
0828 
0829 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
0830 {
0831     vcpu_arch->steal.base = GPA_INVALID;
0832 }
0833 
0834 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
0835 {
0836     return (vcpu_arch->steal.base != GPA_INVALID);
0837 }
0838 
0839 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
0840 
0841 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
0842 
0843 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
0844 
0845 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
0846 {
0847     /* The host's MPIDR is immutable, so let's set it up at boot time */
0848     ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
0849 }
0850 
0851 static inline bool kvm_system_needs_idmapped_vectors(void)
0852 {
0853     return cpus_have_const_cap(ARM64_SPECTRE_V3A);
0854 }
0855 
0856 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
0857 
0858 static inline void kvm_arch_hardware_unsetup(void) {}
0859 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
0860 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
0861 
0862 void kvm_arm_init_debug(void);
0863 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
0864 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
0865 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
0866 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
0867 
0868 #define kvm_vcpu_os_lock_enabled(vcpu)      \
0869     (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK))
0870 
0871 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
0872                    struct kvm_device_attr *attr);
0873 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
0874                    struct kvm_device_attr *attr);
0875 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
0876                    struct kvm_device_attr *attr);
0877 
0878 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
0879                 struct kvm_arm_copy_mte_tags *copy_tags);
0880 
0881 /* Guest/host FPSIMD coordination helpers */
0882 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
0883 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
0884 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
0885 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
0886 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
0887 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
0888 
0889 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
0890 {
0891     return (!has_vhe() && attr->exclude_host);
0892 }
0893 
0894 /* Flags for host debug state */
0895 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
0896 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
0897 
0898 #ifdef CONFIG_KVM
0899 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
0900 void kvm_clr_pmu_events(u32 clr);
0901 #else
0902 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
0903 static inline void kvm_clr_pmu_events(u32 clr) {}
0904 #endif
0905 
0906 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
0907 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
0908 
0909 int kvm_set_ipa_limit(void);
0910 
0911 #define __KVM_HAVE_ARCH_VM_ALLOC
0912 struct kvm *kvm_arch_alloc_vm(void);
0913 
0914 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
0915 
0916 static inline bool kvm_vm_is_protected(struct kvm *kvm)
0917 {
0918     return false;
0919 }
0920 
0921 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
0922 
0923 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
0924 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
0925 
0926 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
0927 
0928 #define kvm_has_mte(kvm)                    \
0929     (system_supports_mte() &&               \
0930      test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
0931 
0932 #define kvm_supports_32bit_el0()                \
0933     (system_supports_32bit_el0() &&             \
0934      !static_branch_unlikely(&arm64_mismatched_32bit_el0))
0935 
0936 int kvm_trng_call(struct kvm_vcpu *vcpu);
0937 #ifdef CONFIG_KVM
0938 extern phys_addr_t hyp_mem_base;
0939 extern phys_addr_t hyp_mem_size;
0940 void __init kvm_hyp_reserve(void);
0941 #else
0942 static inline void kvm_hyp_reserve(void) { }
0943 #endif
0944 
0945 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
0946 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
0947 
0948 #endif /* __ARM64_KVM_HOST_H__ */