0001
0002
0003
0004
0005
0006
0007
0008 #include <asm/neon.h>
0009 #include <asm/simd.h>
0010 #include <asm/unaligned.h>
0011 #include <crypto/aes.h>
0012 #include <crypto/algapi.h>
0013 #include <crypto/b128ops.h>
0014 #include <crypto/gf128mul.h>
0015 #include <crypto/internal/aead.h>
0016 #include <crypto/internal/hash.h>
0017 #include <crypto/internal/simd.h>
0018 #include <crypto/internal/skcipher.h>
0019 #include <crypto/scatterwalk.h>
0020 #include <linux/cpufeature.h>
0021 #include <linux/crypto.h>
0022 #include <linux/module.h>
0023
0024 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
0025 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
0026 MODULE_LICENSE("GPL v2");
0027 MODULE_ALIAS_CRYPTO("ghash");
0028
0029 #define GHASH_BLOCK_SIZE 16
0030 #define GHASH_DIGEST_SIZE 16
0031 #define GCM_IV_SIZE 12
0032
0033 struct ghash_key {
0034 be128 k;
0035 u64 h[][2];
0036 };
0037
0038 struct ghash_desc_ctx {
0039 u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
0040 u8 buf[GHASH_BLOCK_SIZE];
0041 u32 count;
0042 };
0043
0044 struct gcm_aes_ctx {
0045 struct crypto_aes_ctx aes_key;
0046 struct ghash_key ghash_key;
0047 };
0048
0049 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
0050 u64 const h[][2], const char *head);
0051
0052 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
0053 u64 const h[][2], const char *head);
0054
0055 asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[],
0056 u64 const h[][2], u64 dg[], u8 ctr[],
0057 u32 const rk[], int rounds, u8 tag[]);
0058 asmlinkage int pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[],
0059 u64 const h[][2], u64 dg[], u8 ctr[],
0060 u32 const rk[], int rounds, const u8 l[],
0061 const u8 tag[], u64 authsize);
0062
0063 static int ghash_init(struct shash_desc *desc)
0064 {
0065 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
0066
0067 *ctx = (struct ghash_desc_ctx){};
0068 return 0;
0069 }
0070
0071 static void ghash_do_update(int blocks, u64 dg[], const char *src,
0072 struct ghash_key *key, const char *head)
0073 {
0074 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
0075
0076 do {
0077 const u8 *in = src;
0078
0079 if (head) {
0080 in = head;
0081 blocks++;
0082 head = NULL;
0083 } else {
0084 src += GHASH_BLOCK_SIZE;
0085 }
0086
0087 crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
0088 gf128mul_lle(&dst, &key->k);
0089 } while (--blocks);
0090
0091 dg[0] = be64_to_cpu(dst.b);
0092 dg[1] = be64_to_cpu(dst.a);
0093 }
0094
0095 static __always_inline
0096 void ghash_do_simd_update(int blocks, u64 dg[], const char *src,
0097 struct ghash_key *key, const char *head,
0098 void (*simd_update)(int blocks, u64 dg[],
0099 const char *src,
0100 u64 const h[][2],
0101 const char *head))
0102 {
0103 if (likely(crypto_simd_usable())) {
0104 kernel_neon_begin();
0105 simd_update(blocks, dg, src, key->h, head);
0106 kernel_neon_end();
0107 } else {
0108 ghash_do_update(blocks, dg, src, key, head);
0109 }
0110 }
0111
0112
0113 #define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE)
0114
0115 static int ghash_update(struct shash_desc *desc, const u8 *src,
0116 unsigned int len)
0117 {
0118 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
0119 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
0120
0121 ctx->count += len;
0122
0123 if ((partial + len) >= GHASH_BLOCK_SIZE) {
0124 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
0125 int blocks;
0126
0127 if (partial) {
0128 int p = GHASH_BLOCK_SIZE - partial;
0129
0130 memcpy(ctx->buf + partial, src, p);
0131 src += p;
0132 len -= p;
0133 }
0134
0135 blocks = len / GHASH_BLOCK_SIZE;
0136 len %= GHASH_BLOCK_SIZE;
0137
0138 do {
0139 int chunk = min(blocks, MAX_BLOCKS);
0140
0141 ghash_do_simd_update(chunk, ctx->digest, src, key,
0142 partial ? ctx->buf : NULL,
0143 pmull_ghash_update_p8);
0144
0145 blocks -= chunk;
0146 src += chunk * GHASH_BLOCK_SIZE;
0147 partial = 0;
0148 } while (unlikely(blocks > 0));
0149 }
0150 if (len)
0151 memcpy(ctx->buf + partial, src, len);
0152 return 0;
0153 }
0154
0155 static int ghash_final(struct shash_desc *desc, u8 *dst)
0156 {
0157 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
0158 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
0159
0160 if (partial) {
0161 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
0162
0163 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
0164
0165 ghash_do_simd_update(1, ctx->digest, ctx->buf, key, NULL,
0166 pmull_ghash_update_p8);
0167 }
0168 put_unaligned_be64(ctx->digest[1], dst);
0169 put_unaligned_be64(ctx->digest[0], dst + 8);
0170
0171 memzero_explicit(ctx, sizeof(*ctx));
0172 return 0;
0173 }
0174
0175 static void ghash_reflect(u64 h[], const be128 *k)
0176 {
0177 u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
0178
0179 h[0] = (be64_to_cpu(k->b) << 1) | carry;
0180 h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
0181
0182 if (carry)
0183 h[1] ^= 0xc200000000000000UL;
0184 }
0185
0186 static int ghash_setkey(struct crypto_shash *tfm,
0187 const u8 *inkey, unsigned int keylen)
0188 {
0189 struct ghash_key *key = crypto_shash_ctx(tfm);
0190
0191 if (keylen != GHASH_BLOCK_SIZE)
0192 return -EINVAL;
0193
0194
0195 memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
0196
0197 ghash_reflect(key->h[0], &key->k);
0198 return 0;
0199 }
0200
0201 static struct shash_alg ghash_alg = {
0202 .base.cra_name = "ghash",
0203 .base.cra_driver_name = "ghash-neon",
0204 .base.cra_priority = 150,
0205 .base.cra_blocksize = GHASH_BLOCK_SIZE,
0206 .base.cra_ctxsize = sizeof(struct ghash_key) + sizeof(u64[2]),
0207 .base.cra_module = THIS_MODULE,
0208
0209 .digestsize = GHASH_DIGEST_SIZE,
0210 .init = ghash_init,
0211 .update = ghash_update,
0212 .final = ghash_final,
0213 .setkey = ghash_setkey,
0214 .descsize = sizeof(struct ghash_desc_ctx),
0215 };
0216
0217 static int num_rounds(struct crypto_aes_ctx *ctx)
0218 {
0219
0220
0221
0222
0223
0224
0225
0226 return 6 + ctx->key_length / 4;
0227 }
0228
0229 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
0230 unsigned int keylen)
0231 {
0232 struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
0233 u8 key[GHASH_BLOCK_SIZE];
0234 be128 h;
0235 int ret;
0236
0237 ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
0238 if (ret)
0239 return -EINVAL;
0240
0241 aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
0242
0243
0244 memcpy(&ctx->ghash_key.k, key, GHASH_BLOCK_SIZE);
0245
0246 ghash_reflect(ctx->ghash_key.h[0], &ctx->ghash_key.k);
0247
0248 h = ctx->ghash_key.k;
0249 gf128mul_lle(&h, &ctx->ghash_key.k);
0250 ghash_reflect(ctx->ghash_key.h[1], &h);
0251
0252 gf128mul_lle(&h, &ctx->ghash_key.k);
0253 ghash_reflect(ctx->ghash_key.h[2], &h);
0254
0255 gf128mul_lle(&h, &ctx->ghash_key.k);
0256 ghash_reflect(ctx->ghash_key.h[3], &h);
0257
0258 return 0;
0259 }
0260
0261 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
0262 {
0263 switch (authsize) {
0264 case 4:
0265 case 8:
0266 case 12 ... 16:
0267 break;
0268 default:
0269 return -EINVAL;
0270 }
0271 return 0;
0272 }
0273
0274 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
0275 int *buf_count, struct gcm_aes_ctx *ctx)
0276 {
0277 if (*buf_count > 0) {
0278 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
0279
0280 memcpy(&buf[*buf_count], src, buf_added);
0281
0282 *buf_count += buf_added;
0283 src += buf_added;
0284 count -= buf_added;
0285 }
0286
0287 if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
0288 int blocks = count / GHASH_BLOCK_SIZE;
0289
0290 ghash_do_simd_update(blocks, dg, src, &ctx->ghash_key,
0291 *buf_count ? buf : NULL,
0292 pmull_ghash_update_p64);
0293
0294 src += blocks * GHASH_BLOCK_SIZE;
0295 count %= GHASH_BLOCK_SIZE;
0296 *buf_count = 0;
0297 }
0298
0299 if (count > 0) {
0300 memcpy(buf, src, count);
0301 *buf_count = count;
0302 }
0303 }
0304
0305 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
0306 {
0307 struct crypto_aead *aead = crypto_aead_reqtfm(req);
0308 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
0309 u8 buf[GHASH_BLOCK_SIZE];
0310 struct scatter_walk walk;
0311 u32 len = req->assoclen;
0312 int buf_count = 0;
0313
0314 scatterwalk_start(&walk, req->src);
0315
0316 do {
0317 u32 n = scatterwalk_clamp(&walk, len);
0318 u8 *p;
0319
0320 if (!n) {
0321 scatterwalk_start(&walk, sg_next(walk.sg));
0322 n = scatterwalk_clamp(&walk, len);
0323 }
0324 p = scatterwalk_map(&walk);
0325
0326 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
0327 len -= n;
0328
0329 scatterwalk_unmap(p);
0330 scatterwalk_advance(&walk, n);
0331 scatterwalk_done(&walk, 0, len);
0332 } while (len);
0333
0334 if (buf_count) {
0335 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
0336 ghash_do_simd_update(1, dg, buf, &ctx->ghash_key, NULL,
0337 pmull_ghash_update_p64);
0338 }
0339 }
0340
0341 static int gcm_encrypt(struct aead_request *req)
0342 {
0343 struct crypto_aead *aead = crypto_aead_reqtfm(req);
0344 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
0345 int nrounds = num_rounds(&ctx->aes_key);
0346 struct skcipher_walk walk;
0347 u8 buf[AES_BLOCK_SIZE];
0348 u8 iv[AES_BLOCK_SIZE];
0349 u64 dg[2] = {};
0350 be128 lengths;
0351 u8 *tag;
0352 int err;
0353
0354 lengths.a = cpu_to_be64(req->assoclen * 8);
0355 lengths.b = cpu_to_be64(req->cryptlen * 8);
0356
0357 if (req->assoclen)
0358 gcm_calculate_auth_mac(req, dg);
0359
0360 memcpy(iv, req->iv, GCM_IV_SIZE);
0361 put_unaligned_be32(2, iv + GCM_IV_SIZE);
0362
0363 err = skcipher_walk_aead_encrypt(&walk, req, false);
0364
0365 do {
0366 const u8 *src = walk.src.virt.addr;
0367 u8 *dst = walk.dst.virt.addr;
0368 int nbytes = walk.nbytes;
0369
0370 tag = (u8 *)&lengths;
0371
0372 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
0373 src = dst = memcpy(buf + sizeof(buf) - nbytes,
0374 src, nbytes);
0375 } else if (nbytes < walk.total) {
0376 nbytes &= ~(AES_BLOCK_SIZE - 1);
0377 tag = NULL;
0378 }
0379
0380 kernel_neon_begin();
0381 pmull_gcm_encrypt(nbytes, dst, src, ctx->ghash_key.h,
0382 dg, iv, ctx->aes_key.key_enc, nrounds,
0383 tag);
0384 kernel_neon_end();
0385
0386 if (unlikely(!nbytes))
0387 break;
0388
0389 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
0390 memcpy(walk.dst.virt.addr,
0391 buf + sizeof(buf) - nbytes, nbytes);
0392
0393 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
0394 } while (walk.nbytes);
0395
0396 if (err)
0397 return err;
0398
0399
0400 scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
0401 crypto_aead_authsize(aead), 1);
0402
0403 return 0;
0404 }
0405
0406 static int gcm_decrypt(struct aead_request *req)
0407 {
0408 struct crypto_aead *aead = crypto_aead_reqtfm(req);
0409 struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
0410 unsigned int authsize = crypto_aead_authsize(aead);
0411 int nrounds = num_rounds(&ctx->aes_key);
0412 struct skcipher_walk walk;
0413 u8 otag[AES_BLOCK_SIZE];
0414 u8 buf[AES_BLOCK_SIZE];
0415 u8 iv[AES_BLOCK_SIZE];
0416 u64 dg[2] = {};
0417 be128 lengths;
0418 u8 *tag;
0419 int ret;
0420 int err;
0421
0422 lengths.a = cpu_to_be64(req->assoclen * 8);
0423 lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
0424
0425 if (req->assoclen)
0426 gcm_calculate_auth_mac(req, dg);
0427
0428 memcpy(iv, req->iv, GCM_IV_SIZE);
0429 put_unaligned_be32(2, iv + GCM_IV_SIZE);
0430
0431 scatterwalk_map_and_copy(otag, req->src,
0432 req->assoclen + req->cryptlen - authsize,
0433 authsize, 0);
0434
0435 err = skcipher_walk_aead_decrypt(&walk, req, false);
0436
0437 do {
0438 const u8 *src = walk.src.virt.addr;
0439 u8 *dst = walk.dst.virt.addr;
0440 int nbytes = walk.nbytes;
0441
0442 tag = (u8 *)&lengths;
0443
0444 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
0445 src = dst = memcpy(buf + sizeof(buf) - nbytes,
0446 src, nbytes);
0447 } else if (nbytes < walk.total) {
0448 nbytes &= ~(AES_BLOCK_SIZE - 1);
0449 tag = NULL;
0450 }
0451
0452 kernel_neon_begin();
0453 ret = pmull_gcm_decrypt(nbytes, dst, src, ctx->ghash_key.h,
0454 dg, iv, ctx->aes_key.key_enc,
0455 nrounds, tag, otag, authsize);
0456 kernel_neon_end();
0457
0458 if (unlikely(!nbytes))
0459 break;
0460
0461 if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
0462 memcpy(walk.dst.virt.addr,
0463 buf + sizeof(buf) - nbytes, nbytes);
0464
0465 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
0466 } while (walk.nbytes);
0467
0468 if (err)
0469 return err;
0470
0471 return ret ? -EBADMSG : 0;
0472 }
0473
0474 static struct aead_alg gcm_aes_alg = {
0475 .ivsize = GCM_IV_SIZE,
0476 .chunksize = AES_BLOCK_SIZE,
0477 .maxauthsize = AES_BLOCK_SIZE,
0478 .setkey = gcm_setkey,
0479 .setauthsize = gcm_setauthsize,
0480 .encrypt = gcm_encrypt,
0481 .decrypt = gcm_decrypt,
0482
0483 .base.cra_name = "gcm(aes)",
0484 .base.cra_driver_name = "gcm-aes-ce",
0485 .base.cra_priority = 300,
0486 .base.cra_blocksize = 1,
0487 .base.cra_ctxsize = sizeof(struct gcm_aes_ctx) +
0488 4 * sizeof(u64[2]),
0489 .base.cra_module = THIS_MODULE,
0490 };
0491
0492 static int __init ghash_ce_mod_init(void)
0493 {
0494 if (!cpu_have_named_feature(ASIMD))
0495 return -ENODEV;
0496
0497 if (cpu_have_named_feature(PMULL))
0498 return crypto_register_aead(&gcm_aes_alg);
0499
0500 return crypto_register_shash(&ghash_alg);
0501 }
0502
0503 static void __exit ghash_ce_mod_exit(void)
0504 {
0505 if (cpu_have_named_feature(PMULL))
0506 crypto_unregister_aead(&gcm_aes_alg);
0507 else
0508 crypto_unregister_shash(&ghash_alg);
0509 }
0510
0511 static const struct cpu_feature ghash_cpu_feature[] = {
0512 { cpu_feature(PMULL) }, { }
0513 };
0514 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
0515
0516 module_init(ghash_ce_mod_init);
0517 module_exit(ghash_ce_mod_exit);