0001 //
0002 // Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions
0003 //
0004 // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
0005 // Copyright (C) 2019 Google LLC <ebiggers@google.com>
0006 //
0007 // This program is free software; you can redistribute it and/or modify
0008 // it under the terms of the GNU General Public License version 2 as
0009 // published by the Free Software Foundation.
0010 //
0011
0012 // Derived from the x86 version:
0013 //
0014 // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
0015 //
0016 // Copyright (c) 2013, Intel Corporation
0017 //
0018 // Authors:
0019 // Erdinc Ozturk <erdinc.ozturk@intel.com>
0020 // Vinodh Gopal <vinodh.gopal@intel.com>
0021 // James Guilford <james.guilford@intel.com>
0022 // Tim Chen <tim.c.chen@linux.intel.com>
0023 //
0024 // This software is available to you under a choice of one of two
0025 // licenses. You may choose to be licensed under the terms of the GNU
0026 // General Public License (GPL) Version 2, available from the file
0027 // COPYING in the main directory of this source tree, or the
0028 // OpenIB.org BSD license below:
0029 //
0030 // Redistribution and use in source and binary forms, with or without
0031 // modification, are permitted provided that the following conditions are
0032 // met:
0033 //
0034 // * Redistributions of source code must retain the above copyright
0035 // notice, this list of conditions and the following disclaimer.
0036 //
0037 // * Redistributions in binary form must reproduce the above copyright
0038 // notice, this list of conditions and the following disclaimer in the
0039 // documentation and/or other materials provided with the
0040 // distribution.
0041 //
0042 // * Neither the name of the Intel Corporation nor the names of its
0043 // contributors may be used to endorse or promote products derived from
0044 // this software without specific prior written permission.
0045 //
0046 //
0047 // THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
0048 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
0049 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
0050 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
0051 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
0052 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
0053 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
0054 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
0055 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
0056 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
0057 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0058 //
0059 // Reference paper titled "Fast CRC Computation for Generic
0060 // Polynomials Using PCLMULQDQ Instruction"
0061 // URL: http://www.intel.com/content/dam/www/public/us/en/documents
0062 // /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
0063 //
0064
0065 #include <linux/linkage.h>
0066 #include <asm/assembler.h>
0067
0068 .text
0069 .arch armv8-a+crypto
0070
0071 init_crc .req w0
0072 buf .req x1
0073 len .req x2
0074 fold_consts_ptr .req x3
0075
0076 fold_consts .req v10
0077
0078 ad .req v14
0079
0080 k00_16 .req v15
0081 k32_48 .req v16
0082
0083 t3 .req v17
0084 t4 .req v18
0085 t5 .req v19
0086 t6 .req v20
0087 t7 .req v21
0088 t8 .req v22
0089 t9 .req v23
0090
0091 perm1 .req v24
0092 perm2 .req v25
0093 perm3 .req v26
0094 perm4 .req v27
0095
0096 bd1 .req v28
0097 bd2 .req v29
0098 bd3 .req v30
0099 bd4 .req v31
0100
0101 .macro __pmull_init_p64
0102 .endm
0103
0104 .macro __pmull_pre_p64, bd
0105 .endm
0106
0107 .macro __pmull_init_p8
0108 // k00_16 := 0x0000000000000000_000000000000ffff
0109 // k32_48 := 0x00000000ffffffff_0000ffffffffffff
0110 movi k32_48.2d, #0xffffffff
0111 mov k32_48.h[2], k32_48.h[0]
0112 ushr k00_16.2d, k32_48.2d, #32
0113
0114 // prepare the permutation vectors
0115 mov_q x5, 0x080f0e0d0c0b0a09
0116 movi perm4.8b, #8
0117 dup perm1.2d, x5
0118 eor perm1.16b, perm1.16b, perm4.16b
0119 ushr perm2.2d, perm1.2d, #8
0120 ushr perm3.2d, perm1.2d, #16
0121 ushr perm4.2d, perm1.2d, #24
0122 sli perm2.2d, perm1.2d, #56
0123 sli perm3.2d, perm1.2d, #48
0124 sli perm4.2d, perm1.2d, #40
0125 .endm
0126
0127 .macro __pmull_pre_p8, bd
0128 tbl bd1.16b, {\bd\().16b}, perm1.16b
0129 tbl bd2.16b, {\bd\().16b}, perm2.16b
0130 tbl bd3.16b, {\bd\().16b}, perm3.16b
0131 tbl bd4.16b, {\bd\().16b}, perm4.16b
0132 .endm
0133
0134 SYM_FUNC_START_LOCAL(__pmull_p8_core)
0135 .L__pmull_p8_core:
0136 ext t4.8b, ad.8b, ad.8b, #1 // A1
0137 ext t5.8b, ad.8b, ad.8b, #2 // A2
0138 ext t6.8b, ad.8b, ad.8b, #3 // A3
0139
0140 pmull t4.8h, t4.8b, fold_consts.8b // F = A1*B
0141 pmull t8.8h, ad.8b, bd1.8b // E = A*B1
0142 pmull t5.8h, t5.8b, fold_consts.8b // H = A2*B
0143 pmull t7.8h, ad.8b, bd2.8b // G = A*B2
0144 pmull t6.8h, t6.8b, fold_consts.8b // J = A3*B
0145 pmull t9.8h, ad.8b, bd3.8b // I = A*B3
0146 pmull t3.8h, ad.8b, bd4.8b // K = A*B4
0147 b 0f
0148
0149 .L__pmull_p8_core2:
0150 tbl t4.16b, {ad.16b}, perm1.16b // A1
0151 tbl t5.16b, {ad.16b}, perm2.16b // A2
0152 tbl t6.16b, {ad.16b}, perm3.16b // A3
0153
0154 pmull2 t4.8h, t4.16b, fold_consts.16b // F = A1*B
0155 pmull2 t8.8h, ad.16b, bd1.16b // E = A*B1
0156 pmull2 t5.8h, t5.16b, fold_consts.16b // H = A2*B
0157 pmull2 t7.8h, ad.16b, bd2.16b // G = A*B2
0158 pmull2 t6.8h, t6.16b, fold_consts.16b // J = A3*B
0159 pmull2 t9.8h, ad.16b, bd3.16b // I = A*B3
0160 pmull2 t3.8h, ad.16b, bd4.16b // K = A*B4
0161
0162 0: eor t4.16b, t4.16b, t8.16b // L = E + F
0163 eor t5.16b, t5.16b, t7.16b // M = G + H
0164 eor t6.16b, t6.16b, t9.16b // N = I + J
0165
0166 uzp1 t8.2d, t4.2d, t5.2d
0167 uzp2 t4.2d, t4.2d, t5.2d
0168 uzp1 t7.2d, t6.2d, t3.2d
0169 uzp2 t6.2d, t6.2d, t3.2d
0170
0171 // t4 = (L) (P0 + P1) << 8
0172 // t5 = (M) (P2 + P3) << 16
0173 eor t8.16b, t8.16b, t4.16b
0174 and t4.16b, t4.16b, k32_48.16b
0175
0176 // t6 = (N) (P4 + P5) << 24
0177 // t7 = (K) (P6 + P7) << 32
0178 eor t7.16b, t7.16b, t6.16b
0179 and t6.16b, t6.16b, k00_16.16b
0180
0181 eor t8.16b, t8.16b, t4.16b
0182 eor t7.16b, t7.16b, t6.16b
0183
0184 zip2 t5.2d, t8.2d, t4.2d
0185 zip1 t4.2d, t8.2d, t4.2d
0186 zip2 t3.2d, t7.2d, t6.2d
0187 zip1 t6.2d, t7.2d, t6.2d
0188
0189 ext t4.16b, t4.16b, t4.16b, #15
0190 ext t5.16b, t5.16b, t5.16b, #14
0191 ext t6.16b, t6.16b, t6.16b, #13
0192 ext t3.16b, t3.16b, t3.16b, #12
0193
0194 eor t4.16b, t4.16b, t5.16b
0195 eor t6.16b, t6.16b, t3.16b
0196 ret
0197 SYM_FUNC_END(__pmull_p8_core)
0198
0199 .macro __pmull_p8, rq, ad, bd, i
0200 .ifnc \bd, fold_consts
0201 .err
0202 .endif
0203 mov ad.16b, \ad\().16b
0204 .ifb \i
0205 pmull \rq\().8h, \ad\().8b, \bd\().8b // D = A*B
0206 .else
0207 pmull2 \rq\().8h, \ad\().16b, \bd\().16b // D = A*B
0208 .endif
0209
0210 bl .L__pmull_p8_core\i
0211
0212 eor \rq\().16b, \rq\().16b, t4.16b
0213 eor \rq\().16b, \rq\().16b, t6.16b
0214 .endm
0215
0216 // Fold reg1, reg2 into the next 32 data bytes, storing the result back
0217 // into reg1, reg2.
0218 .macro fold_32_bytes, p, reg1, reg2
0219 ldp q11, q12, [buf], #0x20
0220
0221 __pmull_\p v8, \reg1, fold_consts, 2
0222 __pmull_\p \reg1, \reg1, fold_consts
0223
0224 CPU_LE( rev64 v11.16b, v11.16b )
0225 CPU_LE( rev64 v12.16b, v12.16b )
0226
0227 __pmull_\p v9, \reg2, fold_consts, 2
0228 __pmull_\p \reg2, \reg2, fold_consts
0229
0230 CPU_LE( ext v11.16b, v11.16b, v11.16b, #8 )
0231 CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 )
0232
0233 eor \reg1\().16b, \reg1\().16b, v8.16b
0234 eor \reg2\().16b, \reg2\().16b, v9.16b
0235 eor \reg1\().16b, \reg1\().16b, v11.16b
0236 eor \reg2\().16b, \reg2\().16b, v12.16b
0237 .endm
0238
0239 // Fold src_reg into dst_reg, optionally loading the next fold constants
0240 .macro fold_16_bytes, p, src_reg, dst_reg, load_next_consts
0241 __pmull_\p v8, \src_reg, fold_consts
0242 __pmull_\p \src_reg, \src_reg, fold_consts, 2
0243 .ifnb \load_next_consts
0244 ld1 {fold_consts.2d}, [fold_consts_ptr], #16
0245 __pmull_pre_\p fold_consts
0246 .endif
0247 eor \dst_reg\().16b, \dst_reg\().16b, v8.16b
0248 eor \dst_reg\().16b, \dst_reg\().16b, \src_reg\().16b
0249 .endm
0250
0251 .macro __pmull_p64, rd, rn, rm, n
0252 .ifb \n
0253 pmull \rd\().1q, \rn\().1d, \rm\().1d
0254 .else
0255 pmull2 \rd\().1q, \rn\().2d, \rm\().2d
0256 .endif
0257 .endm
0258
0259 .macro crc_t10dif_pmull, p
0260 __pmull_init_\p
0261
0262 // For sizes less than 256 bytes, we can't fold 128 bytes at a time.
0263 cmp len, #256
0264 b.lt .Lless_than_256_bytes_\@
0265
0266 adr_l fold_consts_ptr, .Lfold_across_128_bytes_consts
0267
0268 // Load the first 128 data bytes. Byte swapping is necessary to make
0269 // the bit order match the polynomial coefficient order.
0270 ldp q0, q1, [buf]
0271 ldp q2, q3, [buf, #0x20]
0272 ldp q4, q5, [buf, #0x40]
0273 ldp q6, q7, [buf, #0x60]
0274 add buf, buf, #0x80
0275 CPU_LE( rev64 v0.16b, v0.16b )
0276 CPU_LE( rev64 v1.16b, v1.16b )
0277 CPU_LE( rev64 v2.16b, v2.16b )
0278 CPU_LE( rev64 v3.16b, v3.16b )
0279 CPU_LE( rev64 v4.16b, v4.16b )
0280 CPU_LE( rev64 v5.16b, v5.16b )
0281 CPU_LE( rev64 v6.16b, v6.16b )
0282 CPU_LE( rev64 v7.16b, v7.16b )
0283 CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 )
0284 CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 )
0285 CPU_LE( ext v2.16b, v2.16b, v2.16b, #8 )
0286 CPU_LE( ext v3.16b, v3.16b, v3.16b, #8 )
0287 CPU_LE( ext v4.16b, v4.16b, v4.16b, #8 )
0288 CPU_LE( ext v5.16b, v5.16b, v5.16b, #8 )
0289 CPU_LE( ext v6.16b, v6.16b, v6.16b, #8 )
0290 CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
0291
0292 // XOR the first 16 data *bits* with the initial CRC value.
0293 movi v8.16b, #0
0294 mov v8.h[7], init_crc
0295 eor v0.16b, v0.16b, v8.16b
0296
0297 // Load the constants for folding across 128 bytes.
0298 ld1 {fold_consts.2d}, [fold_consts_ptr]
0299 __pmull_pre_\p fold_consts
0300
0301 // Subtract 128 for the 128 data bytes just consumed. Subtract another
0302 // 128 to simplify the termination condition of the following loop.
0303 sub len, len, #256
0304
0305 // While >= 128 data bytes remain (not counting v0-v7), fold the 128
0306 // bytes v0-v7 into them, storing the result back into v0-v7.
0307 .Lfold_128_bytes_loop_\@:
0308 fold_32_bytes \p, v0, v1
0309 fold_32_bytes \p, v2, v3
0310 fold_32_bytes \p, v4, v5
0311 fold_32_bytes \p, v6, v7
0312
0313 subs len, len, #128
0314 b.ge .Lfold_128_bytes_loop_\@
0315
0316 // Now fold the 112 bytes in v0-v6 into the 16 bytes in v7.
0317
0318 // Fold across 64 bytes.
0319 add fold_consts_ptr, fold_consts_ptr, #16
0320 ld1 {fold_consts.2d}, [fold_consts_ptr], #16
0321 __pmull_pre_\p fold_consts
0322 fold_16_bytes \p, v0, v4
0323 fold_16_bytes \p, v1, v5
0324 fold_16_bytes \p, v2, v6
0325 fold_16_bytes \p, v3, v7, 1
0326 // Fold across 32 bytes.
0327 fold_16_bytes \p, v4, v6
0328 fold_16_bytes \p, v5, v7, 1
0329 // Fold across 16 bytes.
0330 fold_16_bytes \p, v6, v7
0331
0332 // Add 128 to get the correct number of data bytes remaining in 0...127
0333 // (not counting v7), following the previous extra subtraction by 128.
0334 // Then subtract 16 to simplify the termination condition of the
0335 // following loop.
0336 adds len, len, #(128-16)
0337
0338 // While >= 16 data bytes remain (not counting v7), fold the 16 bytes v7
0339 // into them, storing the result back into v7.
0340 b.lt .Lfold_16_bytes_loop_done_\@
0341 .Lfold_16_bytes_loop_\@:
0342 __pmull_\p v8, v7, fold_consts
0343 __pmull_\p v7, v7, fold_consts, 2
0344 eor v7.16b, v7.16b, v8.16b
0345 ldr q0, [buf], #16
0346 CPU_LE( rev64 v0.16b, v0.16b )
0347 CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 )
0348 eor v7.16b, v7.16b, v0.16b
0349 subs len, len, #16
0350 b.ge .Lfold_16_bytes_loop_\@
0351
0352 .Lfold_16_bytes_loop_done_\@:
0353 // Add 16 to get the correct number of data bytes remaining in 0...15
0354 // (not counting v7), following the previous extra subtraction by 16.
0355 adds len, len, #16
0356 b.eq .Lreduce_final_16_bytes_\@
0357
0358 .Lhandle_partial_segment_\@:
0359 // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
0360 // 16 bytes are in v7 and the rest are the remaining data in 'buf'. To
0361 // do this without needing a fold constant for each possible 'len',
0362 // redivide the bytes into a first chunk of 'len' bytes and a second
0363 // chunk of 16 bytes, then fold the first chunk into the second.
0364
0365 // v0 = last 16 original data bytes
0366 add buf, buf, len
0367 ldr q0, [buf, #-16]
0368 CPU_LE( rev64 v0.16b, v0.16b )
0369 CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 )
0370
0371 // v1 = high order part of second chunk: v7 left-shifted by 'len' bytes.
0372 adr_l x4, .Lbyteshift_table + 16
0373 sub x4, x4, len
0374 ld1 {v2.16b}, [x4]
0375 tbl v1.16b, {v7.16b}, v2.16b
0376
0377 // v3 = first chunk: v7 right-shifted by '16-len' bytes.
0378 movi v3.16b, #0x80
0379 eor v2.16b, v2.16b, v3.16b
0380 tbl v3.16b, {v7.16b}, v2.16b
0381
0382 // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
0383 sshr v2.16b, v2.16b, #7
0384
0385 // v2 = second chunk: 'len' bytes from v0 (low-order bytes),
0386 // then '16-len' bytes from v1 (high-order bytes).
0387 bsl v2.16b, v1.16b, v0.16b
0388
0389 // Fold the first chunk into the second chunk, storing the result in v7.
0390 __pmull_\p v0, v3, fold_consts
0391 __pmull_\p v7, v3, fold_consts, 2
0392 eor v7.16b, v7.16b, v0.16b
0393 eor v7.16b, v7.16b, v2.16b
0394
0395 .Lreduce_final_16_bytes_\@:
0396 // Reduce the 128-bit value M(x), stored in v7, to the final 16-bit CRC.
0397
0398 movi v2.16b, #0 // init zero register
0399
0400 // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
0401 ld1 {fold_consts.2d}, [fold_consts_ptr], #16
0402 __pmull_pre_\p fold_consts
0403
0404 // Fold the high 64 bits into the low 64 bits, while also multiplying by
0405 // x^64. This produces a 128-bit value congruent to x^64 * M(x) and
0406 // whose low 48 bits are 0.
0407 ext v0.16b, v2.16b, v7.16b, #8
0408 __pmull_\p v7, v7, fold_consts, 2 // high bits * x^48 * (x^80 mod G(x))
0409 eor v0.16b, v0.16b, v7.16b // + low bits * x^64
0410
0411 // Fold the high 32 bits into the low 96 bits. This produces a 96-bit
0412 // value congruent to x^64 * M(x) and whose low 48 bits are 0.
0413 ext v1.16b, v0.16b, v2.16b, #12 // extract high 32 bits
0414 mov v0.s[3], v2.s[0] // zero high 32 bits
0415 __pmull_\p v1, v1, fold_consts // high 32 bits * x^48 * (x^48 mod G(x))
0416 eor v0.16b, v0.16b, v1.16b // + low bits
0417
0418 // Load G(x) and floor(x^48 / G(x)).
0419 ld1 {fold_consts.2d}, [fold_consts_ptr]
0420 __pmull_pre_\p fold_consts
0421
0422 // Use Barrett reduction to compute the final CRC value.
0423 __pmull_\p v1, v0, fold_consts, 2 // high 32 bits * floor(x^48 / G(x))
0424 ushr v1.2d, v1.2d, #32 // /= x^32
0425 __pmull_\p v1, v1, fold_consts // *= G(x)
0426 ushr v0.2d, v0.2d, #48
0427 eor v0.16b, v0.16b, v1.16b // + low 16 nonzero bits
0428 // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of v0.
0429
0430 umov w0, v0.h[0]
0431 .ifc \p, p8
0432 ldp x29, x30, [sp], #16
0433 .endif
0434 ret
0435
0436 .Lless_than_256_bytes_\@:
0437 // Checksumming a buffer of length 16...255 bytes
0438
0439 adr_l fold_consts_ptr, .Lfold_across_16_bytes_consts
0440
0441 // Load the first 16 data bytes.
0442 ldr q7, [buf], #0x10
0443 CPU_LE( rev64 v7.16b, v7.16b )
0444 CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
0445
0446 // XOR the first 16 data *bits* with the initial CRC value.
0447 movi v0.16b, #0
0448 mov v0.h[7], init_crc
0449 eor v7.16b, v7.16b, v0.16b
0450
0451 // Load the fold-across-16-bytes constants.
0452 ld1 {fold_consts.2d}, [fold_consts_ptr], #16
0453 __pmull_pre_\p fold_consts
0454
0455 cmp len, #16
0456 b.eq .Lreduce_final_16_bytes_\@ // len == 16
0457 subs len, len, #32
0458 b.ge .Lfold_16_bytes_loop_\@ // 32 <= len <= 255
0459 add len, len, #16
0460 b .Lhandle_partial_segment_\@ // 17 <= len <= 31
0461 .endm
0462
0463 //
0464 // u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 *buf, size_t len);
0465 //
0466 // Assumes len >= 16.
0467 //
0468 SYM_FUNC_START(crc_t10dif_pmull_p8)
0469 stp x29, x30, [sp, #-16]!
0470 mov x29, sp
0471 crc_t10dif_pmull p8
0472 SYM_FUNC_END(crc_t10dif_pmull_p8)
0473
0474 .align 5
0475 //
0476 // u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 *buf, size_t len);
0477 //
0478 // Assumes len >= 16.
0479 //
0480 SYM_FUNC_START(crc_t10dif_pmull_p64)
0481 crc_t10dif_pmull p64
0482 SYM_FUNC_END(crc_t10dif_pmull_p64)
0483
0484 .section ".rodata", "a"
0485 .align 4
0486
0487 // Fold constants precomputed from the polynomial 0x18bb7
0488 // G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
0489 .Lfold_across_128_bytes_consts:
0490 .quad 0x0000000000006123 // x^(8*128) mod G(x)
0491 .quad 0x0000000000002295 // x^(8*128+64) mod G(x)
0492 // .Lfold_across_64_bytes_consts:
0493 .quad 0x0000000000001069 // x^(4*128) mod G(x)
0494 .quad 0x000000000000dd31 // x^(4*128+64) mod G(x)
0495 // .Lfold_across_32_bytes_consts:
0496 .quad 0x000000000000857d // x^(2*128) mod G(x)
0497 .quad 0x0000000000007acc // x^(2*128+64) mod G(x)
0498 .Lfold_across_16_bytes_consts:
0499 .quad 0x000000000000a010 // x^(1*128) mod G(x)
0500 .quad 0x0000000000001faa // x^(1*128+64) mod G(x)
0501 // .Lfinal_fold_consts:
0502 .quad 0x1368000000000000 // x^48 * (x^48 mod G(x))
0503 .quad 0x2d56000000000000 // x^48 * (x^80 mod G(x))
0504 // .Lbarrett_reduction_consts:
0505 .quad 0x0000000000018bb7 // G(x)
0506 .quad 0x00000001f65a57f8 // floor(x^48 / G(x))
0507
0508 // For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
0509 // len] is the index vector to shift left by 'len' bytes, and is also {0x80,
0510 // ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
0511 .Lbyteshift_table:
0512 .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
0513 .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
0514 .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
0515 .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0