Back to home page

OSCL-LXR

 
 

    


0001 # SPDX-License-Identifier: GPL-2.0-only
0002 config ARM64
0003         def_bool y
0004         select ACPI_CCA_REQUIRED if ACPI
0005         select ACPI_GENERIC_GSI if ACPI
0006         select ACPI_GTDT if ACPI
0007         select ACPI_IORT if ACPI
0008         select ACPI_REDUCED_HARDWARE_ONLY if ACPI
0009         select ACPI_MCFG if (ACPI && PCI)
0010         select ACPI_SPCR_TABLE if ACPI
0011         select ACPI_PPTT if ACPI
0012         select ARCH_HAS_DEBUG_WX
0013         select ARCH_BINFMT_ELF_EXTRA_PHDRS
0014         select ARCH_BINFMT_ELF_STATE
0015         select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
0016         select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
0017         select ARCH_ENABLE_MEMORY_HOTPLUG
0018         select ARCH_ENABLE_MEMORY_HOTREMOVE
0019         select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
0020         select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
0021         select ARCH_HAS_CACHE_LINE_SIZE
0022         select ARCH_HAS_CURRENT_STACK_POINTER
0023         select ARCH_HAS_DEBUG_VIRTUAL
0024         select ARCH_HAS_DEBUG_VM_PGTABLE
0025         select ARCH_HAS_DMA_PREP_COHERENT
0026         select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
0027         select ARCH_HAS_FAST_MULTIPLIER
0028         select ARCH_HAS_FORTIFY_SOURCE
0029         select ARCH_HAS_GCOV_PROFILE_ALL
0030         select ARCH_HAS_GIGANTIC_PAGE
0031         select ARCH_HAS_KCOV
0032         select ARCH_HAS_KEEPINITRD
0033         select ARCH_HAS_MEMBARRIER_SYNC_CORE
0034         select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
0035         select ARCH_HAS_PTE_DEVMAP
0036         select ARCH_HAS_PTE_SPECIAL
0037         select ARCH_HAS_SETUP_DMA_OPS
0038         select ARCH_HAS_SET_DIRECT_MAP
0039         select ARCH_HAS_SET_MEMORY
0040         select ARCH_STACKWALK
0041         select ARCH_HAS_STRICT_KERNEL_RWX
0042         select ARCH_HAS_STRICT_MODULE_RWX
0043         select ARCH_HAS_SYNC_DMA_FOR_DEVICE
0044         select ARCH_HAS_SYNC_DMA_FOR_CPU
0045         select ARCH_HAS_SYSCALL_WRAPPER
0046         select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
0047         select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
0048         select ARCH_HAS_ZONE_DMA_SET if EXPERT
0049         select ARCH_HAVE_ELF_PROT
0050         select ARCH_HAVE_NMI_SAFE_CMPXCHG
0051         select ARCH_HAVE_TRACE_MMIO_ACCESS
0052         select ARCH_INLINE_READ_LOCK if !PREEMPTION
0053         select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
0054         select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
0055         select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
0056         select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
0057         select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
0058         select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
0059         select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
0060         select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
0061         select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
0062         select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
0063         select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
0064         select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
0065         select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
0066         select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
0067         select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
0068         select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
0069         select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
0070         select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
0071         select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
0072         select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
0073         select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
0074         select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
0075         select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
0076         select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
0077         select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
0078         select ARCH_KEEP_MEMBLOCK
0079         select ARCH_USE_CMPXCHG_LOCKREF
0080         select ARCH_USE_GNU_PROPERTY
0081         select ARCH_USE_MEMTEST
0082         select ARCH_USE_QUEUED_RWLOCKS
0083         select ARCH_USE_QUEUED_SPINLOCKS
0084         select ARCH_USE_SYM_ANNOTATIONS
0085         select ARCH_SUPPORTS_DEBUG_PAGEALLOC
0086         select ARCH_SUPPORTS_HUGETLBFS
0087         select ARCH_SUPPORTS_MEMORY_FAILURE
0088         select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
0089         select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
0090         select ARCH_SUPPORTS_LTO_CLANG_THIN
0091         select ARCH_SUPPORTS_CFI_CLANG
0092         select ARCH_SUPPORTS_ATOMIC_RMW
0093         select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
0094         select ARCH_SUPPORTS_NUMA_BALANCING
0095         select ARCH_SUPPORTS_PAGE_TABLE_CHECK
0096         select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
0097         select ARCH_WANT_DEFAULT_BPF_JIT
0098         select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
0099         select ARCH_WANT_FRAME_POINTERS
0100         select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
0101         select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
0102         select ARCH_WANT_LD_ORPHAN_WARN
0103         select ARCH_WANTS_NO_INSTR
0104         select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
0105         select ARCH_HAS_UBSAN_SANITIZE_ALL
0106         select ARM_AMBA
0107         select ARM_ARCH_TIMER
0108         select ARM_GIC
0109         select AUDIT_ARCH_COMPAT_GENERIC
0110         select ARM_GIC_V2M if PCI
0111         select ARM_GIC_V3
0112         select ARM_GIC_V3_ITS if PCI
0113         select ARM_PSCI_FW
0114         select BUILDTIME_TABLE_SORT
0115         select CLONE_BACKWARDS
0116         select COMMON_CLK
0117         select CPU_PM if (SUSPEND || CPU_IDLE)
0118         select CRC32
0119         select DCACHE_WORD_ACCESS
0120         select DMA_DIRECT_REMAP
0121         select EDAC_SUPPORT
0122         select FRAME_POINTER
0123         select GENERIC_ALLOCATOR
0124         select GENERIC_ARCH_TOPOLOGY
0125         select GENERIC_CLOCKEVENTS_BROADCAST
0126         select GENERIC_CPU_AUTOPROBE
0127         select GENERIC_CPU_VULNERABILITIES
0128         select GENERIC_EARLY_IOREMAP
0129         select GENERIC_IDLE_POLL_SETUP
0130         select GENERIC_IOREMAP
0131         select GENERIC_IRQ_IPI
0132         select GENERIC_IRQ_PROBE
0133         select GENERIC_IRQ_SHOW
0134         select GENERIC_IRQ_SHOW_LEVEL
0135         select GENERIC_LIB_DEVMEM_IS_ALLOWED
0136         select GENERIC_PCI_IOMAP
0137         select GENERIC_PTDUMP
0138         select GENERIC_SCHED_CLOCK
0139         select GENERIC_SMP_IDLE_THREAD
0140         select GENERIC_TIME_VSYSCALL
0141         select GENERIC_GETTIMEOFDAY
0142         select GENERIC_VDSO_TIME_NS
0143         select HARDIRQS_SW_RESEND
0144         select HAVE_MOVE_PMD
0145         select HAVE_MOVE_PUD
0146         select HAVE_PCI
0147         select HAVE_ACPI_APEI if (ACPI && EFI)
0148         select HAVE_ALIGNED_STRUCT_PAGE if SLUB
0149         select HAVE_ARCH_AUDITSYSCALL
0150         select HAVE_ARCH_BITREVERSE
0151         select HAVE_ARCH_COMPILER_H
0152         select HAVE_ARCH_HUGE_VMAP
0153         select HAVE_ARCH_JUMP_LABEL
0154         select HAVE_ARCH_JUMP_LABEL_RELATIVE
0155         select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
0156         select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
0157         select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
0158         select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
0159         # Some instrumentation may be unsound, hence EXPERT
0160         select HAVE_ARCH_KCSAN if EXPERT
0161         select HAVE_ARCH_KFENCE
0162         select HAVE_ARCH_KGDB
0163         select HAVE_ARCH_MMAP_RND_BITS
0164         select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
0165         select HAVE_ARCH_PREL32_RELOCATIONS
0166         select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
0167         select HAVE_ARCH_SECCOMP_FILTER
0168         select HAVE_ARCH_STACKLEAK
0169         select HAVE_ARCH_THREAD_STRUCT_WHITELIST
0170         select HAVE_ARCH_TRACEHOOK
0171         select HAVE_ARCH_TRANSPARENT_HUGEPAGE
0172         select HAVE_ARCH_VMAP_STACK
0173         select HAVE_ARM_SMCCC
0174         select HAVE_ASM_MODVERSIONS
0175         select HAVE_EBPF_JIT
0176         select HAVE_C_RECORDMCOUNT
0177         select HAVE_CMPXCHG_DOUBLE
0178         select HAVE_CMPXCHG_LOCAL
0179         select HAVE_CONTEXT_TRACKING_USER
0180         select HAVE_DEBUG_KMEMLEAK
0181         select HAVE_DMA_CONTIGUOUS
0182         select HAVE_DYNAMIC_FTRACE
0183         select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
0184                 if DYNAMIC_FTRACE_WITH_REGS
0185         select HAVE_EFFICIENT_UNALIGNED_ACCESS
0186         select HAVE_FAST_GUP
0187         select HAVE_FTRACE_MCOUNT_RECORD
0188         select HAVE_FUNCTION_TRACER
0189         select HAVE_FUNCTION_ERROR_INJECTION
0190         select HAVE_FUNCTION_GRAPH_TRACER
0191         select HAVE_GCC_PLUGINS
0192         select HAVE_HW_BREAKPOINT if PERF_EVENTS
0193         select HAVE_IOREMAP_PROT
0194         select HAVE_IRQ_TIME_ACCOUNTING
0195         select HAVE_KVM
0196         select HAVE_NMI
0197         select HAVE_PATA_PLATFORM
0198         select HAVE_PERF_EVENTS
0199         select HAVE_PERF_REGS
0200         select HAVE_PERF_USER_STACK_DUMP
0201         select HAVE_PREEMPT_DYNAMIC_KEY
0202         select HAVE_REGS_AND_STACK_ACCESS_API
0203         select HAVE_POSIX_CPU_TIMERS_TASK_WORK
0204         select HAVE_FUNCTION_ARG_ACCESS_API
0205         select MMU_GATHER_RCU_TABLE_FREE
0206         select HAVE_RSEQ
0207         select HAVE_STACKPROTECTOR
0208         select HAVE_SYSCALL_TRACEPOINTS
0209         select HAVE_KPROBES
0210         select HAVE_KRETPROBES
0211         select HAVE_GENERIC_VDSO
0212         select IOMMU_DMA if IOMMU_SUPPORT
0213         select IRQ_DOMAIN
0214         select IRQ_FORCED_THREADING
0215         select KASAN_VMALLOC if KASAN
0216         select MODULES_USE_ELF_RELA
0217         select NEED_DMA_MAP_STATE
0218         select NEED_SG_DMA_LENGTH
0219         select OF
0220         select OF_EARLY_FLATTREE
0221         select PCI_DOMAINS_GENERIC if PCI
0222         select PCI_ECAM if (ACPI && PCI)
0223         select PCI_SYSCALL if PCI
0224         select POWER_RESET
0225         select POWER_SUPPLY
0226         select SPARSE_IRQ
0227         select SWIOTLB
0228         select SYSCTL_EXCEPTION_TRACE
0229         select THREAD_INFO_IN_TASK
0230         select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
0231         select TRACE_IRQFLAGS_SUPPORT
0232         select TRACE_IRQFLAGS_NMI_SUPPORT
0233         help
0234           ARM 64-bit (AArch64) Linux support.
0235 
0236 config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
0237         def_bool CC_IS_CLANG
0238         # https://github.com/ClangBuiltLinux/linux/issues/1507
0239         depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
0240         select HAVE_DYNAMIC_FTRACE_WITH_REGS
0241 
0242 config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
0243         def_bool CC_IS_GCC
0244         depends on $(cc-option,-fpatchable-function-entry=2)
0245         select HAVE_DYNAMIC_FTRACE_WITH_REGS
0246 
0247 config 64BIT
0248         def_bool y
0249 
0250 config MMU
0251         def_bool y
0252 
0253 config ARM64_PAGE_SHIFT
0254         int
0255         default 16 if ARM64_64K_PAGES
0256         default 14 if ARM64_16K_PAGES
0257         default 12
0258 
0259 config ARM64_CONT_PTE_SHIFT
0260         int
0261         default 5 if ARM64_64K_PAGES
0262         default 7 if ARM64_16K_PAGES
0263         default 4
0264 
0265 config ARM64_CONT_PMD_SHIFT
0266         int
0267         default 5 if ARM64_64K_PAGES
0268         default 5 if ARM64_16K_PAGES
0269         default 4
0270 
0271 config ARCH_MMAP_RND_BITS_MIN
0272         default 14 if ARM64_64K_PAGES
0273         default 16 if ARM64_16K_PAGES
0274         default 18
0275 
0276 # max bits determined by the following formula:
0277 #  VA_BITS - PAGE_SHIFT - 3
0278 config ARCH_MMAP_RND_BITS_MAX
0279         default 19 if ARM64_VA_BITS=36
0280         default 24 if ARM64_VA_BITS=39
0281         default 27 if ARM64_VA_BITS=42
0282         default 30 if ARM64_VA_BITS=47
0283         default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
0284         default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
0285         default 33 if ARM64_VA_BITS=48
0286         default 14 if ARM64_64K_PAGES
0287         default 16 if ARM64_16K_PAGES
0288         default 18
0289 
0290 config ARCH_MMAP_RND_COMPAT_BITS_MIN
0291         default 7 if ARM64_64K_PAGES
0292         default 9 if ARM64_16K_PAGES
0293         default 11
0294 
0295 config ARCH_MMAP_RND_COMPAT_BITS_MAX
0296         default 16
0297 
0298 config NO_IOPORT_MAP
0299         def_bool y if !PCI
0300 
0301 config STACKTRACE_SUPPORT
0302         def_bool y
0303 
0304 config ILLEGAL_POINTER_VALUE
0305         hex
0306         default 0xdead000000000000
0307 
0308 config LOCKDEP_SUPPORT
0309         def_bool y
0310 
0311 config GENERIC_BUG
0312         def_bool y
0313         depends on BUG
0314 
0315 config GENERIC_BUG_RELATIVE_POINTERS
0316         def_bool y
0317         depends on GENERIC_BUG
0318 
0319 config GENERIC_HWEIGHT
0320         def_bool y
0321 
0322 config GENERIC_CSUM
0323         def_bool y
0324 
0325 config GENERIC_CALIBRATE_DELAY
0326         def_bool y
0327 
0328 config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
0329         def_bool y
0330 
0331 config SMP
0332         def_bool y
0333 
0334 config KERNEL_MODE_NEON
0335         def_bool y
0336 
0337 config FIX_EARLYCON_MEM
0338         def_bool y
0339 
0340 config PGTABLE_LEVELS
0341         int
0342         default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
0343         default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
0344         default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
0345         default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
0346         default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
0347         default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
0348 
0349 config ARCH_SUPPORTS_UPROBES
0350         def_bool y
0351 
0352 config ARCH_PROC_KCORE_TEXT
0353         def_bool y
0354 
0355 config BROKEN_GAS_INST
0356         def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
0357 
0358 config KASAN_SHADOW_OFFSET
0359         hex
0360         depends on KASAN_GENERIC || KASAN_SW_TAGS
0361         default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
0362         default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
0363         default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
0364         default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
0365         default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
0366         default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
0367         default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
0368         default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
0369         default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
0370         default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
0371         default 0xffffffffffffffff
0372 
0373 source "arch/arm64/Kconfig.platforms"
0374 
0375 menu "Kernel Features"
0376 
0377 menu "ARM errata workarounds via the alternatives framework"
0378 
0379 config ARM64_WORKAROUND_CLEAN_CACHE
0380         bool
0381 
0382 config ARM64_ERRATUM_826319
0383         bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
0384         default y
0385         select ARM64_WORKAROUND_CLEAN_CACHE
0386         help
0387           This option adds an alternative code sequence to work around ARM
0388           erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
0389           AXI master interface and an L2 cache.
0390 
0391           If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
0392           and is unable to accept a certain write via this interface, it will
0393           not progress on read data presented on the read data channel and the
0394           system can deadlock.
0395 
0396           The workaround promotes data cache clean instructions to
0397           data cache clean-and-invalidate.
0398           Please note that this does not necessarily enable the workaround,
0399           as it depends on the alternative framework, which will only patch
0400           the kernel if an affected CPU is detected.
0401 
0402           If unsure, say Y.
0403 
0404 config ARM64_ERRATUM_827319
0405         bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
0406         default y
0407         select ARM64_WORKAROUND_CLEAN_CACHE
0408         help
0409           This option adds an alternative code sequence to work around ARM
0410           erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
0411           master interface and an L2 cache.
0412 
0413           Under certain conditions this erratum can cause a clean line eviction
0414           to occur at the same time as another transaction to the same address
0415           on the AMBA 5 CHI interface, which can cause data corruption if the
0416           interconnect reorders the two transactions.
0417 
0418           The workaround promotes data cache clean instructions to
0419           data cache clean-and-invalidate.
0420           Please note that this does not necessarily enable the workaround,
0421           as it depends on the alternative framework, which will only patch
0422           the kernel if an affected CPU is detected.
0423 
0424           If unsure, say Y.
0425 
0426 config ARM64_ERRATUM_824069
0427         bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
0428         default y
0429         select ARM64_WORKAROUND_CLEAN_CACHE
0430         help
0431           This option adds an alternative code sequence to work around ARM
0432           erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
0433           to a coherent interconnect.
0434 
0435           If a Cortex-A53 processor is executing a store or prefetch for
0436           write instruction at the same time as a processor in another
0437           cluster is executing a cache maintenance operation to the same
0438           address, then this erratum might cause a clean cache line to be
0439           incorrectly marked as dirty.
0440 
0441           The workaround promotes data cache clean instructions to
0442           data cache clean-and-invalidate.
0443           Please note that this option does not necessarily enable the
0444           workaround, as it depends on the alternative framework, which will
0445           only patch the kernel if an affected CPU is detected.
0446 
0447           If unsure, say Y.
0448 
0449 config ARM64_ERRATUM_819472
0450         bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
0451         default y
0452         select ARM64_WORKAROUND_CLEAN_CACHE
0453         help
0454           This option adds an alternative code sequence to work around ARM
0455           erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
0456           present when it is connected to a coherent interconnect.
0457 
0458           If the processor is executing a load and store exclusive sequence at
0459           the same time as a processor in another cluster is executing a cache
0460           maintenance operation to the same address, then this erratum might
0461           cause data corruption.
0462 
0463           The workaround promotes data cache clean instructions to
0464           data cache clean-and-invalidate.
0465           Please note that this does not necessarily enable the workaround,
0466           as it depends on the alternative framework, which will only patch
0467           the kernel if an affected CPU is detected.
0468 
0469           If unsure, say Y.
0470 
0471 config ARM64_ERRATUM_832075
0472         bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
0473         default y
0474         help
0475           This option adds an alternative code sequence to work around ARM
0476           erratum 832075 on Cortex-A57 parts up to r1p2.
0477 
0478           Affected Cortex-A57 parts might deadlock when exclusive load/store
0479           instructions to Write-Back memory are mixed with Device loads.
0480 
0481           The workaround is to promote device loads to use Load-Acquire
0482           semantics.
0483           Please note that this does not necessarily enable the workaround,
0484           as it depends on the alternative framework, which will only patch
0485           the kernel if an affected CPU is detected.
0486 
0487           If unsure, say Y.
0488 
0489 config ARM64_ERRATUM_834220
0490         bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
0491         depends on KVM
0492         default y
0493         help
0494           This option adds an alternative code sequence to work around ARM
0495           erratum 834220 on Cortex-A57 parts up to r1p2.
0496 
0497           Affected Cortex-A57 parts might report a Stage 2 translation
0498           fault as the result of a Stage 1 fault for load crossing a
0499           page boundary when there is a permission or device memory
0500           alignment fault at Stage 1 and a translation fault at Stage 2.
0501 
0502           The workaround is to verify that the Stage 1 translation
0503           doesn't generate a fault before handling the Stage 2 fault.
0504           Please note that this does not necessarily enable the workaround,
0505           as it depends on the alternative framework, which will only patch
0506           the kernel if an affected CPU is detected.
0507 
0508           If unsure, say Y.
0509 
0510 config ARM64_ERRATUM_1742098
0511         bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
0512         depends on COMPAT
0513         default y
0514         help
0515           This option removes the AES hwcap for aarch32 user-space to
0516           workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
0517 
0518           Affected parts may corrupt the AES state if an interrupt is
0519           taken between a pair of AES instructions. These instructions
0520           are only present if the cryptography extensions are present.
0521           All software should have a fallback implementation for CPUs
0522           that don't implement the cryptography extensions.
0523 
0524           If unsure, say Y.
0525 
0526 config ARM64_ERRATUM_845719
0527         bool "Cortex-A53: 845719: a load might read incorrect data"
0528         depends on COMPAT
0529         default y
0530         help
0531           This option adds an alternative code sequence to work around ARM
0532           erratum 845719 on Cortex-A53 parts up to r0p4.
0533 
0534           When running a compat (AArch32) userspace on an affected Cortex-A53
0535           part, a load at EL0 from a virtual address that matches the bottom 32
0536           bits of the virtual address used by a recent load at (AArch64) EL1
0537           might return incorrect data.
0538 
0539           The workaround is to write the contextidr_el1 register on exception
0540           return to a 32-bit task.
0541           Please note that this does not necessarily enable the workaround,
0542           as it depends on the alternative framework, which will only patch
0543           the kernel if an affected CPU is detected.
0544 
0545           If unsure, say Y.
0546 
0547 config ARM64_ERRATUM_843419
0548         bool "Cortex-A53: 843419: A load or store might access an incorrect address"
0549         default y
0550         select ARM64_MODULE_PLTS if MODULES
0551         help
0552           This option links the kernel with '--fix-cortex-a53-843419' and
0553           enables PLT support to replace certain ADRP instructions, which can
0554           cause subsequent memory accesses to use an incorrect address on
0555           Cortex-A53 parts up to r0p4.
0556 
0557           If unsure, say Y.
0558 
0559 config ARM64_LD_HAS_FIX_ERRATUM_843419
0560         def_bool $(ld-option,--fix-cortex-a53-843419)
0561 
0562 config ARM64_ERRATUM_1024718
0563         bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
0564         default y
0565         help
0566           This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
0567 
0568           Affected Cortex-A55 cores (all revisions) could cause incorrect
0569           update of the hardware dirty bit when the DBM/AP bits are updated
0570           without a break-before-make. The workaround is to disable the usage
0571           of hardware DBM locally on the affected cores. CPUs not affected by
0572           this erratum will continue to use the feature.
0573 
0574           If unsure, say Y.
0575 
0576 config ARM64_ERRATUM_1418040
0577         bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
0578         default y
0579         depends on COMPAT
0580         help
0581           This option adds a workaround for ARM Cortex-A76/Neoverse-N1
0582           errata 1188873 and 1418040.
0583 
0584           Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
0585           cause register corruption when accessing the timer registers
0586           from AArch32 userspace.
0587 
0588           If unsure, say Y.
0589 
0590 config ARM64_WORKAROUND_SPECULATIVE_AT
0591         bool
0592 
0593 config ARM64_ERRATUM_1165522
0594         bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
0595         default y
0596         select ARM64_WORKAROUND_SPECULATIVE_AT
0597         help
0598           This option adds a workaround for ARM Cortex-A76 erratum 1165522.
0599 
0600           Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
0601           corrupted TLBs by speculating an AT instruction during a guest
0602           context switch.
0603 
0604           If unsure, say Y.
0605 
0606 config ARM64_ERRATUM_1319367
0607         bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
0608         default y
0609         select ARM64_WORKAROUND_SPECULATIVE_AT
0610         help
0611           This option adds work arounds for ARM Cortex-A57 erratum 1319537
0612           and A72 erratum 1319367
0613 
0614           Cortex-A57 and A72 cores could end-up with corrupted TLBs by
0615           speculating an AT instruction during a guest context switch.
0616 
0617           If unsure, say Y.
0618 
0619 config ARM64_ERRATUM_1530923
0620         bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
0621         default y
0622         select ARM64_WORKAROUND_SPECULATIVE_AT
0623         help
0624           This option adds a workaround for ARM Cortex-A55 erratum 1530923.
0625 
0626           Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
0627           corrupted TLBs by speculating an AT instruction during a guest
0628           context switch.
0629 
0630           If unsure, say Y.
0631 
0632 config ARM64_WORKAROUND_REPEAT_TLBI
0633         bool
0634 
0635 config ARM64_ERRATUM_1286807
0636         bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
0637         default y
0638         select ARM64_WORKAROUND_REPEAT_TLBI
0639         help
0640           This option adds a workaround for ARM Cortex-A76 erratum 1286807.
0641 
0642           On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
0643           address for a cacheable mapping of a location is being
0644           accessed by a core while another core is remapping the virtual
0645           address to a new physical page using the recommended
0646           break-before-make sequence, then under very rare circumstances
0647           TLBI+DSB completes before a read using the translation being
0648           invalidated has been observed by other observers. The
0649           workaround repeats the TLBI+DSB operation.
0650 
0651 config ARM64_ERRATUM_1463225
0652         bool "Cortex-A76: Software Step might prevent interrupt recognition"
0653         default y
0654         help
0655           This option adds a workaround for Arm Cortex-A76 erratum 1463225.
0656 
0657           On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
0658           of a system call instruction (SVC) can prevent recognition of
0659           subsequent interrupts when software stepping is disabled in the
0660           exception handler of the system call and either kernel debugging
0661           is enabled or VHE is in use.
0662 
0663           Work around the erratum by triggering a dummy step exception
0664           when handling a system call from a task that is being stepped
0665           in a VHE configuration of the kernel.
0666 
0667           If unsure, say Y.
0668 
0669 config ARM64_ERRATUM_1542419
0670         bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
0671         default y
0672         help
0673           This option adds a workaround for ARM Neoverse-N1 erratum
0674           1542419.
0675 
0676           Affected Neoverse-N1 cores could execute a stale instruction when
0677           modified by another CPU. The workaround depends on a firmware
0678           counterpart.
0679 
0680           Workaround the issue by hiding the DIC feature from EL0. This
0681           forces user-space to perform cache maintenance.
0682 
0683           If unsure, say Y.
0684 
0685 config ARM64_ERRATUM_1508412
0686         bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
0687         default y
0688         help
0689           This option adds a workaround for Arm Cortex-A77 erratum 1508412.
0690 
0691           Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
0692           of a store-exclusive or read of PAR_EL1 and a load with device or
0693           non-cacheable memory attributes. The workaround depends on a firmware
0694           counterpart.
0695 
0696           KVM guests must also have the workaround implemented or they can
0697           deadlock the system.
0698 
0699           Work around the issue by inserting DMB SY barriers around PAR_EL1
0700           register reads and warning KVM users. The DMB barrier is sufficient
0701           to prevent a speculative PAR_EL1 read.
0702 
0703           If unsure, say Y.
0704 
0705 config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
0706         bool
0707 
0708 config ARM64_ERRATUM_2051678
0709         bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
0710         default y
0711         help
0712           This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
0713           Affected Cortex-A510 might not respect the ordering rules for
0714           hardware update of the page table's dirty bit. The workaround
0715           is to not enable the feature on affected CPUs.
0716 
0717           If unsure, say Y.
0718 
0719 config ARM64_ERRATUM_2077057
0720         bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
0721         default y
0722         help
0723           This option adds the workaround for ARM Cortex-A510 erratum 2077057.
0724           Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
0725           expected, but a Pointer Authentication trap is taken instead. The
0726           erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
0727           EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
0728 
0729           This can only happen when EL2 is stepping EL1.
0730 
0731           When these conditions occur, the SPSR_EL2 value is unchanged from the
0732           previous guest entry, and can be restored from the in-memory copy.
0733 
0734           If unsure, say Y.
0735 
0736 config ARM64_ERRATUM_2119858
0737         bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
0738         default y
0739         depends on CORESIGHT_TRBE
0740         select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
0741         help
0742           This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
0743 
0744           Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
0745           data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
0746           the event of a WRAP event.
0747 
0748           Work around the issue by always making sure we move the TRBPTR_EL1 by
0749           256 bytes before enabling the buffer and filling the first 256 bytes of
0750           the buffer with ETM ignore packets upon disabling.
0751 
0752           If unsure, say Y.
0753 
0754 config ARM64_ERRATUM_2139208
0755         bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
0756         default y
0757         depends on CORESIGHT_TRBE
0758         select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
0759         help
0760           This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
0761 
0762           Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
0763           data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
0764           the event of a WRAP event.
0765 
0766           Work around the issue by always making sure we move the TRBPTR_EL1 by
0767           256 bytes before enabling the buffer and filling the first 256 bytes of
0768           the buffer with ETM ignore packets upon disabling.
0769 
0770           If unsure, say Y.
0771 
0772 config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
0773         bool
0774 
0775 config ARM64_ERRATUM_2054223
0776         bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
0777         default y
0778         select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
0779         help
0780           Enable workaround for ARM Cortex-A710 erratum 2054223
0781 
0782           Affected cores may fail to flush the trace data on a TSB instruction, when
0783           the PE is in trace prohibited state. This will cause losing a few bytes
0784           of the trace cached.
0785 
0786           Workaround is to issue two TSB consecutively on affected cores.
0787 
0788           If unsure, say Y.
0789 
0790 config ARM64_ERRATUM_2067961
0791         bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
0792         default y
0793         select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
0794         help
0795           Enable workaround for ARM Neoverse-N2 erratum 2067961
0796 
0797           Affected cores may fail to flush the trace data on a TSB instruction, when
0798           the PE is in trace prohibited state. This will cause losing a few bytes
0799           of the trace cached.
0800 
0801           Workaround is to issue two TSB consecutively on affected cores.
0802 
0803           If unsure, say Y.
0804 
0805 config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
0806         bool
0807 
0808 config ARM64_ERRATUM_2253138
0809         bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
0810         depends on CORESIGHT_TRBE
0811         default y
0812         select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
0813         help
0814           This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
0815 
0816           Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
0817           for TRBE. Under some conditions, the TRBE might generate a write to the next
0818           virtually addressed page following the last page of the TRBE address space
0819           (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
0820 
0821           Work around this in the driver by always making sure that there is a
0822           page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
0823 
0824           If unsure, say Y.
0825 
0826 config ARM64_ERRATUM_2224489
0827         bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
0828         depends on CORESIGHT_TRBE
0829         default y
0830         select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
0831         help
0832           This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
0833 
0834           Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
0835           for TRBE. Under some conditions, the TRBE might generate a write to the next
0836           virtually addressed page following the last page of the TRBE address space
0837           (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
0838 
0839           Work around this in the driver by always making sure that there is a
0840           page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
0841 
0842           If unsure, say Y.
0843 
0844 config ARM64_ERRATUM_2441009
0845         bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
0846         default y
0847         select ARM64_WORKAROUND_REPEAT_TLBI
0848         help
0849           This option adds a workaround for ARM Cortex-A510 erratum #2441009.
0850 
0851           Under very rare circumstances, affected Cortex-A510 CPUs
0852           may not handle a race between a break-before-make sequence on one
0853           CPU, and another CPU accessing the same page. This could allow a
0854           store to a page that has been unmapped.
0855 
0856           Work around this by adding the affected CPUs to the list that needs
0857           TLB sequences to be done twice.
0858 
0859           If unsure, say Y.
0860 
0861 config ARM64_ERRATUM_2064142
0862         bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
0863         depends on CORESIGHT_TRBE
0864         default y
0865         help
0866           This option adds the workaround for ARM Cortex-A510 erratum 2064142.
0867 
0868           Affected Cortex-A510 core might fail to write into system registers after the
0869           TRBE has been disabled. Under some conditions after the TRBE has been disabled
0870           writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
0871           and TRBTRG_EL1 will be ignored and will not be effected.
0872 
0873           Work around this in the driver by executing TSB CSYNC and DSB after collection
0874           is stopped and before performing a system register write to one of the affected
0875           registers.
0876 
0877           If unsure, say Y.
0878 
0879 config ARM64_ERRATUM_2038923
0880         bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
0881         depends on CORESIGHT_TRBE
0882         default y
0883         help
0884           This option adds the workaround for ARM Cortex-A510 erratum 2038923.
0885 
0886           Affected Cortex-A510 core might cause an inconsistent view on whether trace is
0887           prohibited within the CPU. As a result, the trace buffer or trace buffer state
0888           might be corrupted. This happens after TRBE buffer has been enabled by setting
0889           TRBLIMITR_EL1.E, followed by just a single context synchronization event before
0890           execution changes from a context, in which trace is prohibited to one where it
0891           isn't, or vice versa. In these mentioned conditions, the view of whether trace
0892           is prohibited is inconsistent between parts of the CPU, and the trace buffer or
0893           the trace buffer state might be corrupted.
0894 
0895           Work around this in the driver by preventing an inconsistent view of whether the
0896           trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
0897           change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
0898           two ISB instructions if no ERET is to take place.
0899 
0900           If unsure, say Y.
0901 
0902 config ARM64_ERRATUM_1902691
0903         bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
0904         depends on CORESIGHT_TRBE
0905         default y
0906         help
0907           This option adds the workaround for ARM Cortex-A510 erratum 1902691.
0908 
0909           Affected Cortex-A510 core might cause trace data corruption, when being written
0910           into the memory. Effectively TRBE is broken and hence cannot be used to capture
0911           trace data.
0912 
0913           Work around this problem in the driver by just preventing TRBE initialization on
0914           affected cpus. The firmware must have disabled the access to TRBE for the kernel
0915           on such implementations. This will cover the kernel for any firmware that doesn't
0916           do this already.
0917 
0918           If unsure, say Y.
0919 
0920 config ARM64_ERRATUM_2457168
0921         bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
0922         depends on ARM64_AMU_EXTN
0923         default y
0924         help
0925           This option adds the workaround for ARM Cortex-A510 erratum 2457168.
0926 
0927           The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
0928           as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
0929           incorrectly giving a significantly higher output value.
0930 
0931           Work around this problem by returning 0 when reading the affected counter in
0932           key locations that results in disabling all users of this counter. This effect
0933           is the same to firmware disabling affected counters.
0934 
0935           If unsure, say Y.
0936 
0937 config CAVIUM_ERRATUM_22375
0938         bool "Cavium erratum 22375, 24313"
0939         default y
0940         help
0941           Enable workaround for errata 22375 and 24313.
0942 
0943           This implements two gicv3-its errata workarounds for ThunderX. Both
0944           with a small impact affecting only ITS table allocation.
0945 
0946             erratum 22375: only alloc 8MB table size
0947             erratum 24313: ignore memory access type
0948 
0949           The fixes are in ITS initialization and basically ignore memory access
0950           type and table size provided by the TYPER and BASER registers.
0951 
0952           If unsure, say Y.
0953 
0954 config CAVIUM_ERRATUM_23144
0955         bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
0956         depends on NUMA
0957         default y
0958         help
0959           ITS SYNC command hang for cross node io and collections/cpu mapping.
0960 
0961           If unsure, say Y.
0962 
0963 config CAVIUM_ERRATUM_23154
0964         bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
0965         default y
0966         help
0967           The ThunderX GICv3 implementation requires a modified version for
0968           reading the IAR status to ensure data synchronization
0969           (access to icc_iar1_el1 is not sync'ed before and after).
0970 
0971           It also suffers from erratum 38545 (also present on Marvell's
0972           OcteonTX and OcteonTX2), resulting in deactivated interrupts being
0973           spuriously presented to the CPU interface.
0974 
0975           If unsure, say Y.
0976 
0977 config CAVIUM_ERRATUM_27456
0978         bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
0979         default y
0980         help
0981           On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
0982           instructions may cause the icache to become corrupted if it
0983           contains data for a non-current ASID.  The fix is to
0984           invalidate the icache when changing the mm context.
0985 
0986           If unsure, say Y.
0987 
0988 config CAVIUM_ERRATUM_30115
0989         bool "Cavium erratum 30115: Guest may disable interrupts in host"
0990         default y
0991         help
0992           On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
0993           1.2, and T83 Pass 1.0, KVM guest execution may disable
0994           interrupts in host. Trapping both GICv3 group-0 and group-1
0995           accesses sidesteps the issue.
0996 
0997           If unsure, say Y.
0998 
0999 config CAVIUM_TX2_ERRATUM_219
1000         bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1001         default y
1002         help
1003           On Cavium ThunderX2, a load, store or prefetch instruction between a
1004           TTBR update and the corresponding context synchronizing operation can
1005           cause a spurious Data Abort to be delivered to any hardware thread in
1006           the CPU core.
1007 
1008           Work around the issue by avoiding the problematic code sequence and
1009           trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1010           trap handler performs the corresponding register access, skips the
1011           instruction and ensures context synchronization by virtue of the
1012           exception return.
1013 
1014           If unsure, say Y.
1015 
1016 config FUJITSU_ERRATUM_010001
1017         bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1018         default y
1019         help
1020           This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1021           On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1022           accesses may cause undefined fault (Data abort, DFSC=0b111111).
1023           This fault occurs under a specific hardware condition when a
1024           load/store instruction performs an address translation using:
1025           case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1026           case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1027           case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1028           case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1029 
1030           The workaround is to ensure these bits are clear in TCR_ELx.
1031           The workaround only affects the Fujitsu-A64FX.
1032 
1033           If unsure, say Y.
1034 
1035 config HISILICON_ERRATUM_161600802
1036         bool "Hip07 161600802: Erroneous redistributor VLPI base"
1037         default y
1038         help
1039           The HiSilicon Hip07 SoC uses the wrong redistributor base
1040           when issued ITS commands such as VMOVP and VMAPP, and requires
1041           a 128kB offset to be applied to the target address in this commands.
1042 
1043           If unsure, say Y.
1044 
1045 config QCOM_FALKOR_ERRATUM_1003
1046         bool "Falkor E1003: Incorrect translation due to ASID change"
1047         default y
1048         help
1049           On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1050           and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1051           in TTBR1_EL1, this situation only occurs in the entry trampoline and
1052           then only for entries in the walk cache, since the leaf translation
1053           is unchanged. Work around the erratum by invalidating the walk cache
1054           entries for the trampoline before entering the kernel proper.
1055 
1056 config QCOM_FALKOR_ERRATUM_1009
1057         bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1058         default y
1059         select ARM64_WORKAROUND_REPEAT_TLBI
1060         help
1061           On Falkor v1, the CPU may prematurely complete a DSB following a
1062           TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1063           one more time to fix the issue.
1064 
1065           If unsure, say Y.
1066 
1067 config QCOM_QDF2400_ERRATUM_0065
1068         bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1069         default y
1070         help
1071           On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1072           ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1073           been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1074 
1075           If unsure, say Y.
1076 
1077 config QCOM_FALKOR_ERRATUM_E1041
1078         bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1079         default y
1080         help
1081           Falkor CPU may speculatively fetch instructions from an improper
1082           memory location when MMU translation is changed from SCTLR_ELn[M]=1
1083           to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1084 
1085           If unsure, say Y.
1086 
1087 config NVIDIA_CARMEL_CNP_ERRATUM
1088         bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1089         default y
1090         help
1091           If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1092           invalidate shared TLB entries installed by a different core, as it would
1093           on standard ARM cores.
1094 
1095           If unsure, say Y.
1096 
1097 config SOCIONEXT_SYNQUACER_PREITS
1098         bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1099         default y
1100         help
1101           Socionext Synquacer SoCs implement a separate h/w block to generate
1102           MSI doorbell writes with non-zero values for the device ID.
1103 
1104           If unsure, say Y.
1105 
1106 endmenu # "ARM errata workarounds via the alternatives framework"
1107 
1108 choice
1109         prompt "Page size"
1110         default ARM64_4K_PAGES
1111         help
1112           Page size (translation granule) configuration.
1113 
1114 config ARM64_4K_PAGES
1115         bool "4KB"
1116         help
1117           This feature enables 4KB pages support.
1118 
1119 config ARM64_16K_PAGES
1120         bool "16KB"
1121         help
1122           The system will use 16KB pages support. AArch32 emulation
1123           requires applications compiled with 16K (or a multiple of 16K)
1124           aligned segments.
1125 
1126 config ARM64_64K_PAGES
1127         bool "64KB"
1128         help
1129           This feature enables 64KB pages support (4KB by default)
1130           allowing only two levels of page tables and faster TLB
1131           look-up. AArch32 emulation requires applications compiled
1132           with 64K aligned segments.
1133 
1134 endchoice
1135 
1136 choice
1137         prompt "Virtual address space size"
1138         default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1139         default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1140         default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1141         help
1142           Allows choosing one of multiple possible virtual address
1143           space sizes. The level of translation table is determined by
1144           a combination of page size and virtual address space size.
1145 
1146 config ARM64_VA_BITS_36
1147         bool "36-bit" if EXPERT
1148         depends on ARM64_16K_PAGES
1149 
1150 config ARM64_VA_BITS_39
1151         bool "39-bit"
1152         depends on ARM64_4K_PAGES
1153 
1154 config ARM64_VA_BITS_42
1155         bool "42-bit"
1156         depends on ARM64_64K_PAGES
1157 
1158 config ARM64_VA_BITS_47
1159         bool "47-bit"
1160         depends on ARM64_16K_PAGES
1161 
1162 config ARM64_VA_BITS_48
1163         bool "48-bit"
1164 
1165 config ARM64_VA_BITS_52
1166         bool "52-bit"
1167         depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1168         help
1169           Enable 52-bit virtual addressing for userspace when explicitly
1170           requested via a hint to mmap(). The kernel will also use 52-bit
1171           virtual addresses for its own mappings (provided HW support for
1172           this feature is available, otherwise it reverts to 48-bit).
1173 
1174           NOTE: Enabling 52-bit virtual addressing in conjunction with
1175           ARMv8.3 Pointer Authentication will result in the PAC being
1176           reduced from 7 bits to 3 bits, which may have a significant
1177           impact on its susceptibility to brute-force attacks.
1178 
1179           If unsure, select 48-bit virtual addressing instead.
1180 
1181 endchoice
1182 
1183 config ARM64_FORCE_52BIT
1184         bool "Force 52-bit virtual addresses for userspace"
1185         depends on ARM64_VA_BITS_52 && EXPERT
1186         help
1187           For systems with 52-bit userspace VAs enabled, the kernel will attempt
1188           to maintain compatibility with older software by providing 48-bit VAs
1189           unless a hint is supplied to mmap.
1190 
1191           This configuration option disables the 48-bit compatibility logic, and
1192           forces all userspace addresses to be 52-bit on HW that supports it. One
1193           should only enable this configuration option for stress testing userspace
1194           memory management code. If unsure say N here.
1195 
1196 config ARM64_VA_BITS
1197         int
1198         default 36 if ARM64_VA_BITS_36
1199         default 39 if ARM64_VA_BITS_39
1200         default 42 if ARM64_VA_BITS_42
1201         default 47 if ARM64_VA_BITS_47
1202         default 48 if ARM64_VA_BITS_48
1203         default 52 if ARM64_VA_BITS_52
1204 
1205 choice
1206         prompt "Physical address space size"
1207         default ARM64_PA_BITS_48
1208         help
1209           Choose the maximum physical address range that the kernel will
1210           support.
1211 
1212 config ARM64_PA_BITS_48
1213         bool "48-bit"
1214 
1215 config ARM64_PA_BITS_52
1216         bool "52-bit (ARMv8.2)"
1217         depends on ARM64_64K_PAGES
1218         depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1219         help
1220           Enable support for a 52-bit physical address space, introduced as
1221           part of the ARMv8.2-LPA extension.
1222 
1223           With this enabled, the kernel will also continue to work on CPUs that
1224           do not support ARMv8.2-LPA, but with some added memory overhead (and
1225           minor performance overhead).
1226 
1227 endchoice
1228 
1229 config ARM64_PA_BITS
1230         int
1231         default 48 if ARM64_PA_BITS_48
1232         default 52 if ARM64_PA_BITS_52
1233 
1234 choice
1235         prompt "Endianness"
1236         default CPU_LITTLE_ENDIAN
1237         help
1238           Select the endianness of data accesses performed by the CPU. Userspace
1239           applications will need to be compiled and linked for the endianness
1240           that is selected here.
1241 
1242 config CPU_BIG_ENDIAN
1243         bool "Build big-endian kernel"
1244         depends on !LD_IS_LLD || LLD_VERSION >= 130000
1245         help
1246           Say Y if you plan on running a kernel with a big-endian userspace.
1247 
1248 config CPU_LITTLE_ENDIAN
1249         bool "Build little-endian kernel"
1250         help
1251           Say Y if you plan on running a kernel with a little-endian userspace.
1252           This is usually the case for distributions targeting arm64.
1253 
1254 endchoice
1255 
1256 config SCHED_MC
1257         bool "Multi-core scheduler support"
1258         help
1259           Multi-core scheduler support improves the CPU scheduler's decision
1260           making when dealing with multi-core CPU chips at a cost of slightly
1261           increased overhead in some places. If unsure say N here.
1262 
1263 config SCHED_CLUSTER
1264         bool "Cluster scheduler support"
1265         help
1266           Cluster scheduler support improves the CPU scheduler's decision
1267           making when dealing with machines that have clusters of CPUs.
1268           Cluster usually means a couple of CPUs which are placed closely
1269           by sharing mid-level caches, last-level cache tags or internal
1270           busses.
1271 
1272 config SCHED_SMT
1273         bool "SMT scheduler support"
1274         help
1275           Improves the CPU scheduler's decision making when dealing with
1276           MultiThreading at a cost of slightly increased overhead in some
1277           places. If unsure say N here.
1278 
1279 config NR_CPUS
1280         int "Maximum number of CPUs (2-4096)"
1281         range 2 4096
1282         default "256"
1283 
1284 config HOTPLUG_CPU
1285         bool "Support for hot-pluggable CPUs"
1286         select GENERIC_IRQ_MIGRATION
1287         help
1288           Say Y here to experiment with turning CPUs off and on.  CPUs
1289           can be controlled through /sys/devices/system/cpu.
1290 
1291 # Common NUMA Features
1292 config NUMA
1293         bool "NUMA Memory Allocation and Scheduler Support"
1294         select GENERIC_ARCH_NUMA
1295         select ACPI_NUMA if ACPI
1296         select OF_NUMA
1297         select HAVE_SETUP_PER_CPU_AREA
1298         select NEED_PER_CPU_EMBED_FIRST_CHUNK
1299         select NEED_PER_CPU_PAGE_FIRST_CHUNK
1300         select USE_PERCPU_NUMA_NODE_ID
1301         help
1302           Enable NUMA (Non-Uniform Memory Access) support.
1303 
1304           The kernel will try to allocate memory used by a CPU on the
1305           local memory of the CPU and add some more
1306           NUMA awareness to the kernel.
1307 
1308 config NODES_SHIFT
1309         int "Maximum NUMA Nodes (as a power of 2)"
1310         range 1 10
1311         default "4"
1312         depends on NUMA
1313         help
1314           Specify the maximum number of NUMA Nodes available on the target
1315           system.  Increases memory reserved to accommodate various tables.
1316 
1317 source "kernel/Kconfig.hz"
1318 
1319 config ARCH_SPARSEMEM_ENABLE
1320         def_bool y
1321         select SPARSEMEM_VMEMMAP_ENABLE
1322         select SPARSEMEM_VMEMMAP
1323 
1324 config HW_PERF_EVENTS
1325         def_bool y
1326         depends on ARM_PMU
1327 
1328 # Supported by clang >= 7.0 or GCC >= 12.0.0
1329 config CC_HAVE_SHADOW_CALL_STACK
1330         def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1331 
1332 config PARAVIRT
1333         bool "Enable paravirtualization code"
1334         help
1335           This changes the kernel so it can modify itself when it is run
1336           under a hypervisor, potentially improving performance significantly
1337           over full virtualization.
1338 
1339 config PARAVIRT_TIME_ACCOUNTING
1340         bool "Paravirtual steal time accounting"
1341         select PARAVIRT
1342         help
1343           Select this option to enable fine granularity task steal time
1344           accounting. Time spent executing other tasks in parallel with
1345           the current vCPU is discounted from the vCPU power. To account for
1346           that, there can be a small performance impact.
1347 
1348           If in doubt, say N here.
1349 
1350 config KEXEC
1351         depends on PM_SLEEP_SMP
1352         select KEXEC_CORE
1353         bool "kexec system call"
1354         help
1355           kexec is a system call that implements the ability to shutdown your
1356           current kernel, and to start another kernel.  It is like a reboot
1357           but it is independent of the system firmware.   And like a reboot
1358           you can start any kernel with it, not just Linux.
1359 
1360 config KEXEC_FILE
1361         bool "kexec file based system call"
1362         select KEXEC_CORE
1363         select HAVE_IMA_KEXEC if IMA
1364         help
1365           This is new version of kexec system call. This system call is
1366           file based and takes file descriptors as system call argument
1367           for kernel and initramfs as opposed to list of segments as
1368           accepted by previous system call.
1369 
1370 config KEXEC_SIG
1371         bool "Verify kernel signature during kexec_file_load() syscall"
1372         depends on KEXEC_FILE
1373         help
1374           Select this option to verify a signature with loaded kernel
1375           image. If configured, any attempt of loading a image without
1376           valid signature will fail.
1377 
1378           In addition to that option, you need to enable signature
1379           verification for the corresponding kernel image type being
1380           loaded in order for this to work.
1381 
1382 config KEXEC_IMAGE_VERIFY_SIG
1383         bool "Enable Image signature verification support"
1384         default y
1385         depends on KEXEC_SIG
1386         depends on EFI && SIGNED_PE_FILE_VERIFICATION
1387         help
1388           Enable Image signature verification support.
1389 
1390 comment "Support for PE file signature verification disabled"
1391         depends on KEXEC_SIG
1392         depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1393 
1394 config CRASH_DUMP
1395         bool "Build kdump crash kernel"
1396         help
1397           Generate crash dump after being started by kexec. This should
1398           be normally only set in special crash dump kernels which are
1399           loaded in the main kernel with kexec-tools into a specially
1400           reserved region and then later executed after a crash by
1401           kdump/kexec.
1402 
1403           For more details see Documentation/admin-guide/kdump/kdump.rst
1404 
1405 config TRANS_TABLE
1406         def_bool y
1407         depends on HIBERNATION || KEXEC_CORE
1408 
1409 config XEN_DOM0
1410         def_bool y
1411         depends on XEN
1412 
1413 config XEN
1414         bool "Xen guest support on ARM64"
1415         depends on ARM64 && OF
1416         select SWIOTLB_XEN
1417         select PARAVIRT
1418         help
1419           Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1420 
1421 config FORCE_MAX_ZONEORDER
1422         int
1423         default "14" if ARM64_64K_PAGES
1424         default "12" if ARM64_16K_PAGES
1425         default "11"
1426         help
1427           The kernel memory allocator divides physically contiguous memory
1428           blocks into "zones", where each zone is a power of two number of
1429           pages.  This option selects the largest power of two that the kernel
1430           keeps in the memory allocator.  If you need to allocate very large
1431           blocks of physically contiguous memory, then you may need to
1432           increase this value.
1433 
1434           This config option is actually maximum order plus one. For example,
1435           a value of 11 means that the largest free memory block is 2^10 pages.
1436 
1437           We make sure that we can allocate upto a HugePage size for each configuration.
1438           Hence we have :
1439                 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1440 
1441           However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1442           4M allocations matching the default size used by generic code.
1443 
1444 config UNMAP_KERNEL_AT_EL0
1445         bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1446         default y
1447         help
1448           Speculation attacks against some high-performance processors can
1449           be used to bypass MMU permission checks and leak kernel data to
1450           userspace. This can be defended against by unmapping the kernel
1451           when running in userspace, mapping it back in on exception entry
1452           via a trampoline page in the vector table.
1453 
1454           If unsure, say Y.
1455 
1456 config MITIGATE_SPECTRE_BRANCH_HISTORY
1457         bool "Mitigate Spectre style attacks against branch history" if EXPERT
1458         default y
1459         help
1460           Speculation attacks against some high-performance processors can
1461           make use of branch history to influence future speculation.
1462           When taking an exception from user-space, a sequence of branches
1463           or a firmware call overwrites the branch history.
1464 
1465 config RODATA_FULL_DEFAULT_ENABLED
1466         bool "Apply r/o permissions of VM areas also to their linear aliases"
1467         default y
1468         help
1469           Apply read-only attributes of VM areas to the linear alias of
1470           the backing pages as well. This prevents code or read-only data
1471           from being modified (inadvertently or intentionally) via another
1472           mapping of the same memory page. This additional enhancement can
1473           be turned off at runtime by passing rodata=[off|on] (and turned on
1474           with rodata=full if this option is set to 'n')
1475 
1476           This requires the linear region to be mapped down to pages,
1477           which may adversely affect performance in some cases.
1478 
1479 config ARM64_SW_TTBR0_PAN
1480         bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1481         help
1482           Enabling this option prevents the kernel from accessing
1483           user-space memory directly by pointing TTBR0_EL1 to a reserved
1484           zeroed area and reserved ASID. The user access routines
1485           restore the valid TTBR0_EL1 temporarily.
1486 
1487 config ARM64_TAGGED_ADDR_ABI
1488         bool "Enable the tagged user addresses syscall ABI"
1489         default y
1490         help
1491           When this option is enabled, user applications can opt in to a
1492           relaxed ABI via prctl() allowing tagged addresses to be passed
1493           to system calls as pointer arguments. For details, see
1494           Documentation/arm64/tagged-address-abi.rst.
1495 
1496 menuconfig COMPAT
1497         bool "Kernel support for 32-bit EL0"
1498         depends on ARM64_4K_PAGES || EXPERT
1499         select HAVE_UID16
1500         select OLD_SIGSUSPEND3
1501         select COMPAT_OLD_SIGACTION
1502         help
1503           This option enables support for a 32-bit EL0 running under a 64-bit
1504           kernel at EL1. AArch32-specific components such as system calls,
1505           the user helper functions, VFP support and the ptrace interface are
1506           handled appropriately by the kernel.
1507 
1508           If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1509           that you will only be able to execute AArch32 binaries that were compiled
1510           with page size aligned segments.
1511 
1512           If you want to execute 32-bit userspace applications, say Y.
1513 
1514 if COMPAT
1515 
1516 config KUSER_HELPERS
1517         bool "Enable kuser helpers page for 32-bit applications"
1518         default y
1519         help
1520           Warning: disabling this option may break 32-bit user programs.
1521 
1522           Provide kuser helpers to compat tasks. The kernel provides
1523           helper code to userspace in read only form at a fixed location
1524           to allow userspace to be independent of the CPU type fitted to
1525           the system. This permits binaries to be run on ARMv4 through
1526           to ARMv8 without modification.
1527 
1528           See Documentation/arm/kernel_user_helpers.rst for details.
1529 
1530           However, the fixed address nature of these helpers can be used
1531           by ROP (return orientated programming) authors when creating
1532           exploits.
1533 
1534           If all of the binaries and libraries which run on your platform
1535           are built specifically for your platform, and make no use of
1536           these helpers, then you can turn this option off to hinder
1537           such exploits. However, in that case, if a binary or library
1538           relying on those helpers is run, it will not function correctly.
1539 
1540           Say N here only if you are absolutely certain that you do not
1541           need these helpers; otherwise, the safe option is to say Y.
1542 
1543 config COMPAT_VDSO
1544         bool "Enable vDSO for 32-bit applications"
1545         depends on !CPU_BIG_ENDIAN
1546         depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1547         select GENERIC_COMPAT_VDSO
1548         default y
1549         help
1550           Place in the process address space of 32-bit applications an
1551           ELF shared object providing fast implementations of gettimeofday
1552           and clock_gettime.
1553 
1554           You must have a 32-bit build of glibc 2.22 or later for programs
1555           to seamlessly take advantage of this.
1556 
1557 config THUMB2_COMPAT_VDSO
1558         bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1559         depends on COMPAT_VDSO
1560         default y
1561         help
1562           Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1563           otherwise with '-marm'.
1564 
1565 menuconfig ARMV8_DEPRECATED
1566         bool "Emulate deprecated/obsolete ARMv8 instructions"
1567         depends on SYSCTL
1568         help
1569           Legacy software support may require certain instructions
1570           that have been deprecated or obsoleted in the architecture.
1571 
1572           Enable this config to enable selective emulation of these
1573           features.
1574 
1575           If unsure, say Y
1576 
1577 if ARMV8_DEPRECATED
1578 
1579 config SWP_EMULATION
1580         bool "Emulate SWP/SWPB instructions"
1581         help
1582           ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1583           they are always undefined. Say Y here to enable software
1584           emulation of these instructions for userspace using LDXR/STXR.
1585           This feature can be controlled at runtime with the abi.swp
1586           sysctl which is disabled by default.
1587 
1588           In some older versions of glibc [<=2.8] SWP is used during futex
1589           trylock() operations with the assumption that the code will not
1590           be preempted. This invalid assumption may be more likely to fail
1591           with SWP emulation enabled, leading to deadlock of the user
1592           application.
1593 
1594           NOTE: when accessing uncached shared regions, LDXR/STXR rely
1595           on an external transaction monitoring block called a global
1596           monitor to maintain update atomicity. If your system does not
1597           implement a global monitor, this option can cause programs that
1598           perform SWP operations to uncached memory to deadlock.
1599 
1600           If unsure, say Y
1601 
1602 config CP15_BARRIER_EMULATION
1603         bool "Emulate CP15 Barrier instructions"
1604         help
1605           The CP15 barrier instructions - CP15ISB, CP15DSB, and
1606           CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1607           strongly recommended to use the ISB, DSB, and DMB
1608           instructions instead.
1609 
1610           Say Y here to enable software emulation of these
1611           instructions for AArch32 userspace code. When this option is
1612           enabled, CP15 barrier usage is traced which can help
1613           identify software that needs updating. This feature can be
1614           controlled at runtime with the abi.cp15_barrier sysctl.
1615 
1616           If unsure, say Y
1617 
1618 config SETEND_EMULATION
1619         bool "Emulate SETEND instruction"
1620         help
1621           The SETEND instruction alters the data-endianness of the
1622           AArch32 EL0, and is deprecated in ARMv8.
1623 
1624           Say Y here to enable software emulation of the instruction
1625           for AArch32 userspace code. This feature can be controlled
1626           at runtime with the abi.setend sysctl.
1627 
1628           Note: All the cpus on the system must have mixed endian support at EL0
1629           for this feature to be enabled. If a new CPU - which doesn't support mixed
1630           endian - is hotplugged in after this feature has been enabled, there could
1631           be unexpected results in the applications.
1632 
1633           If unsure, say Y
1634 endif # ARMV8_DEPRECATED
1635 
1636 endif # COMPAT
1637 
1638 menu "ARMv8.1 architectural features"
1639 
1640 config ARM64_HW_AFDBM
1641         bool "Support for hardware updates of the Access and Dirty page flags"
1642         default y
1643         help
1644           The ARMv8.1 architecture extensions introduce support for
1645           hardware updates of the access and dirty information in page
1646           table entries. When enabled in TCR_EL1 (HA and HD bits) on
1647           capable processors, accesses to pages with PTE_AF cleared will
1648           set this bit instead of raising an access flag fault.
1649           Similarly, writes to read-only pages with the DBM bit set will
1650           clear the read-only bit (AP[2]) instead of raising a
1651           permission fault.
1652 
1653           Kernels built with this configuration option enabled continue
1654           to work on pre-ARMv8.1 hardware and the performance impact is
1655           minimal. If unsure, say Y.
1656 
1657 config ARM64_PAN
1658         bool "Enable support for Privileged Access Never (PAN)"
1659         default y
1660         help
1661           Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1662           prevents the kernel or hypervisor from accessing user-space (EL0)
1663           memory directly.
1664 
1665           Choosing this option will cause any unprotected (not using
1666           copy_to_user et al) memory access to fail with a permission fault.
1667 
1668           The feature is detected at runtime, and will remain as a 'nop'
1669           instruction if the cpu does not implement the feature.
1670 
1671 config AS_HAS_LDAPR
1672         def_bool $(as-instr,.arch_extension rcpc)
1673 
1674 config AS_HAS_LSE_ATOMICS
1675         def_bool $(as-instr,.arch_extension lse)
1676 
1677 config ARM64_LSE_ATOMICS
1678         bool
1679         default ARM64_USE_LSE_ATOMICS
1680         depends on AS_HAS_LSE_ATOMICS
1681 
1682 config ARM64_USE_LSE_ATOMICS
1683         bool "Atomic instructions"
1684         depends on JUMP_LABEL
1685         default y
1686         help
1687           As part of the Large System Extensions, ARMv8.1 introduces new
1688           atomic instructions that are designed specifically to scale in
1689           very large systems.
1690 
1691           Say Y here to make use of these instructions for the in-kernel
1692           atomic routines. This incurs a small overhead on CPUs that do
1693           not support these instructions and requires the kernel to be
1694           built with binutils >= 2.25 in order for the new instructions
1695           to be used.
1696 
1697 endmenu # "ARMv8.1 architectural features"
1698 
1699 menu "ARMv8.2 architectural features"
1700 
1701 config AS_HAS_ARMV8_2
1702         def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1703 
1704 config AS_HAS_SHA3
1705         def_bool $(as-instr,.arch armv8.2-a+sha3)
1706 
1707 config ARM64_PMEM
1708         bool "Enable support for persistent memory"
1709         select ARCH_HAS_PMEM_API
1710         select ARCH_HAS_UACCESS_FLUSHCACHE
1711         help
1712           Say Y to enable support for the persistent memory API based on the
1713           ARMv8.2 DCPoP feature.
1714 
1715           The feature is detected at runtime, and the kernel will use DC CVAC
1716           operations if DC CVAP is not supported (following the behaviour of
1717           DC CVAP itself if the system does not define a point of persistence).
1718 
1719 config ARM64_RAS_EXTN
1720         bool "Enable support for RAS CPU Extensions"
1721         default y
1722         help
1723           CPUs that support the Reliability, Availability and Serviceability
1724           (RAS) Extensions, part of ARMv8.2 are able to track faults and
1725           errors, classify them and report them to software.
1726 
1727           On CPUs with these extensions system software can use additional
1728           barriers to determine if faults are pending and read the
1729           classification from a new set of registers.
1730 
1731           Selecting this feature will allow the kernel to use these barriers
1732           and access the new registers if the system supports the extension.
1733           Platform RAS features may additionally depend on firmware support.
1734 
1735 config ARM64_CNP
1736         bool "Enable support for Common Not Private (CNP) translations"
1737         default y
1738         depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1739         help
1740           Common Not Private (CNP) allows translation table entries to
1741           be shared between different PEs in the same inner shareable
1742           domain, so the hardware can use this fact to optimise the
1743           caching of such entries in the TLB.
1744 
1745           Selecting this option allows the CNP feature to be detected
1746           at runtime, and does not affect PEs that do not implement
1747           this feature.
1748 
1749 endmenu # "ARMv8.2 architectural features"
1750 
1751 menu "ARMv8.3 architectural features"
1752 
1753 config ARM64_PTR_AUTH
1754         bool "Enable support for pointer authentication"
1755         default y
1756         help
1757           Pointer authentication (part of the ARMv8.3 Extensions) provides
1758           instructions for signing and authenticating pointers against secret
1759           keys, which can be used to mitigate Return Oriented Programming (ROP)
1760           and other attacks.
1761 
1762           This option enables these instructions at EL0 (i.e. for userspace).
1763           Choosing this option will cause the kernel to initialise secret keys
1764           for each process at exec() time, with these keys being
1765           context-switched along with the process.
1766 
1767           The feature is detected at runtime. If the feature is not present in
1768           hardware it will not be advertised to userspace/KVM guest nor will it
1769           be enabled.
1770 
1771           If the feature is present on the boot CPU but not on a late CPU, then
1772           the late CPU will be parked. Also, if the boot CPU does not have
1773           address auth and the late CPU has then the late CPU will still boot
1774           but with the feature disabled. On such a system, this option should
1775           not be selected.
1776 
1777 config ARM64_PTR_AUTH_KERNEL
1778         bool "Use pointer authentication for kernel"
1779         default y
1780         depends on ARM64_PTR_AUTH
1781         depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1782         # Modern compilers insert a .note.gnu.property section note for PAC
1783         # which is only understood by binutils starting with version 2.33.1.
1784         depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1785         depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1786         depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1787         help
1788           If the compiler supports the -mbranch-protection or
1789           -msign-return-address flag (e.g. GCC 7 or later), then this option
1790           will cause the kernel itself to be compiled with return address
1791           protection. In this case, and if the target hardware is known to
1792           support pointer authentication, then CONFIG_STACKPROTECTOR can be
1793           disabled with minimal loss of protection.
1794 
1795           This feature works with FUNCTION_GRAPH_TRACER option only if
1796           DYNAMIC_FTRACE_WITH_REGS is enabled.
1797 
1798 config CC_HAS_BRANCH_PROT_PAC_RET
1799         # GCC 9 or later, clang 8 or later
1800         def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1801 
1802 config CC_HAS_SIGN_RETURN_ADDRESS
1803         # GCC 7, 8
1804         def_bool $(cc-option,-msign-return-address=all)
1805 
1806 config AS_HAS_PAC
1807         def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1808 
1809 config AS_HAS_CFI_NEGATE_RA_STATE
1810         def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1811 
1812 endmenu # "ARMv8.3 architectural features"
1813 
1814 menu "ARMv8.4 architectural features"
1815 
1816 config ARM64_AMU_EXTN
1817         bool "Enable support for the Activity Monitors Unit CPU extension"
1818         default y
1819         help
1820           The activity monitors extension is an optional extension introduced
1821           by the ARMv8.4 CPU architecture. This enables support for version 1
1822           of the activity monitors architecture, AMUv1.
1823 
1824           To enable the use of this extension on CPUs that implement it, say Y.
1825 
1826           Note that for architectural reasons, firmware _must_ implement AMU
1827           support when running on CPUs that present the activity monitors
1828           extension. The required support is present in:
1829             * Version 1.5 and later of the ARM Trusted Firmware
1830 
1831           For kernels that have this configuration enabled but boot with broken
1832           firmware, you may need to say N here until the firmware is fixed.
1833           Otherwise you may experience firmware panics or lockups when
1834           accessing the counter registers. Even if you are not observing these
1835           symptoms, the values returned by the register reads might not
1836           correctly reflect reality. Most commonly, the value read will be 0,
1837           indicating that the counter is not enabled.
1838 
1839 config AS_HAS_ARMV8_4
1840         def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1841 
1842 config ARM64_TLB_RANGE
1843         bool "Enable support for tlbi range feature"
1844         default y
1845         depends on AS_HAS_ARMV8_4
1846         help
1847           ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1848           range of input addresses.
1849 
1850           The feature introduces new assembly instructions, and they were
1851           support when binutils >= 2.30.
1852 
1853 endmenu # "ARMv8.4 architectural features"
1854 
1855 menu "ARMv8.5 architectural features"
1856 
1857 config AS_HAS_ARMV8_5
1858         def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1859 
1860 config ARM64_BTI
1861         bool "Branch Target Identification support"
1862         default y
1863         help
1864           Branch Target Identification (part of the ARMv8.5 Extensions)
1865           provides a mechanism to limit the set of locations to which computed
1866           branch instructions such as BR or BLR can jump.
1867 
1868           To make use of BTI on CPUs that support it, say Y.
1869 
1870           BTI is intended to provide complementary protection to other control
1871           flow integrity protection mechanisms, such as the Pointer
1872           authentication mechanism provided as part of the ARMv8.3 Extensions.
1873           For this reason, it does not make sense to enable this option without
1874           also enabling support for pointer authentication.  Thus, when
1875           enabling this option you should also select ARM64_PTR_AUTH=y.
1876 
1877           Userspace binaries must also be specifically compiled to make use of
1878           this mechanism.  If you say N here or the hardware does not support
1879           BTI, such binaries can still run, but you get no additional
1880           enforcement of branch destinations.
1881 
1882 config ARM64_BTI_KERNEL
1883         bool "Use Branch Target Identification for kernel"
1884         default y
1885         depends on ARM64_BTI
1886         depends on ARM64_PTR_AUTH_KERNEL
1887         depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1888         # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1889         depends on !CC_IS_GCC || GCC_VERSION >= 100100
1890         # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
1891         depends on !CC_IS_GCC
1892         # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1893         depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1894         depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1895         help
1896           Build the kernel with Branch Target Identification annotations
1897           and enable enforcement of this for kernel code. When this option
1898           is enabled and the system supports BTI all kernel code including
1899           modular code must have BTI enabled.
1900 
1901 config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1902         # GCC 9 or later, clang 8 or later
1903         def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1904 
1905 config ARM64_E0PD
1906         bool "Enable support for E0PD"
1907         default y
1908         help
1909           E0PD (part of the ARMv8.5 extensions) allows us to ensure
1910           that EL0 accesses made via TTBR1 always fault in constant time,
1911           providing similar benefits to KASLR as those provided by KPTI, but
1912           with lower overhead and without disrupting legitimate access to
1913           kernel memory such as SPE.
1914 
1915           This option enables E0PD for TTBR1 where available.
1916 
1917 config ARM64_AS_HAS_MTE
1918         # Initial support for MTE went in binutils 2.32.0, checked with
1919         # ".arch armv8.5-a+memtag" below. However, this was incomplete
1920         # as a late addition to the final architecture spec (LDGM/STGM)
1921         # is only supported in the newer 2.32.x and 2.33 binutils
1922         # versions, hence the extra "stgm" instruction check below.
1923         def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1924 
1925 config ARM64_MTE
1926         bool "Memory Tagging Extension support"
1927         default y
1928         depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1929         depends on AS_HAS_ARMV8_5
1930         depends on AS_HAS_LSE_ATOMICS
1931         # Required for tag checking in the uaccess routines
1932         depends on ARM64_PAN
1933         select ARCH_HAS_SUBPAGE_FAULTS
1934         select ARCH_USES_HIGH_VMA_FLAGS
1935         help
1936           Memory Tagging (part of the ARMv8.5 Extensions) provides
1937           architectural support for run-time, always-on detection of
1938           various classes of memory error to aid with software debugging
1939           to eliminate vulnerabilities arising from memory-unsafe
1940           languages.
1941 
1942           This option enables the support for the Memory Tagging
1943           Extension at EL0 (i.e. for userspace).
1944 
1945           Selecting this option allows the feature to be detected at
1946           runtime. Any secondary CPU not implementing this feature will
1947           not be allowed a late bring-up.
1948 
1949           Userspace binaries that want to use this feature must
1950           explicitly opt in. The mechanism for the userspace is
1951           described in:
1952 
1953           Documentation/arm64/memory-tagging-extension.rst.
1954 
1955 endmenu # "ARMv8.5 architectural features"
1956 
1957 menu "ARMv8.7 architectural features"
1958 
1959 config ARM64_EPAN
1960         bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1961         default y
1962         depends on ARM64_PAN
1963         help
1964           Enhanced Privileged Access Never (EPAN) allows Privileged
1965           Access Never to be used with Execute-only mappings.
1966 
1967           The feature is detected at runtime, and will remain disabled
1968           if the cpu does not implement the feature.
1969 endmenu # "ARMv8.7 architectural features"
1970 
1971 config ARM64_SVE
1972         bool "ARM Scalable Vector Extension support"
1973         default y
1974         help
1975           The Scalable Vector Extension (SVE) is an extension to the AArch64
1976           execution state which complements and extends the SIMD functionality
1977           of the base architecture to support much larger vectors and to enable
1978           additional vectorisation opportunities.
1979 
1980           To enable use of this extension on CPUs that implement it, say Y.
1981 
1982           On CPUs that support the SVE2 extensions, this option will enable
1983           those too.
1984 
1985           Note that for architectural reasons, firmware _must_ implement SVE
1986           support when running on SVE capable hardware.  The required support
1987           is present in:
1988 
1989             * version 1.5 and later of the ARM Trusted Firmware
1990             * the AArch64 boot wrapper since commit 5e1261e08abf
1991               ("bootwrapper: SVE: Enable SVE for EL2 and below").
1992 
1993           For other firmware implementations, consult the firmware documentation
1994           or vendor.
1995 
1996           If you need the kernel to boot on SVE-capable hardware with broken
1997           firmware, you may need to say N here until you get your firmware
1998           fixed.  Otherwise, you may experience firmware panics or lockups when
1999           booting the kernel.  If unsure and you are not observing these
2000           symptoms, you should assume that it is safe to say Y.
2001 
2002 config ARM64_SME
2003         bool "ARM Scalable Matrix Extension support"
2004         default y
2005         depends on ARM64_SVE
2006         help
2007           The Scalable Matrix Extension (SME) is an extension to the AArch64
2008           execution state which utilises a substantial subset of the SVE
2009           instruction set, together with the addition of new architectural
2010           register state capable of holding two dimensional matrix tiles to
2011           enable various matrix operations.
2012 
2013 config ARM64_MODULE_PLTS
2014         bool "Use PLTs to allow module memory to spill over into vmalloc area"
2015         depends on MODULES
2016         select HAVE_MOD_ARCH_SPECIFIC
2017         help
2018           Allocate PLTs when loading modules so that jumps and calls whose
2019           targets are too far away for their relative offsets to be encoded
2020           in the instructions themselves can be bounced via veneers in the
2021           module's PLT. This allows modules to be allocated in the generic
2022           vmalloc area after the dedicated module memory area has been
2023           exhausted.
2024 
2025           When running with address space randomization (KASLR), the module
2026           region itself may be too far away for ordinary relative jumps and
2027           calls, and so in that case, module PLTs are required and cannot be
2028           disabled.
2029 
2030           Specific errata workaround(s) might also force module PLTs to be
2031           enabled (ARM64_ERRATUM_843419).
2032 
2033 config ARM64_PSEUDO_NMI
2034         bool "Support for NMI-like interrupts"
2035         select ARM_GIC_V3
2036         help
2037           Adds support for mimicking Non-Maskable Interrupts through the use of
2038           GIC interrupt priority. This support requires version 3 or later of
2039           ARM GIC.
2040 
2041           This high priority configuration for interrupts needs to be
2042           explicitly enabled by setting the kernel parameter
2043           "irqchip.gicv3_pseudo_nmi" to 1.
2044 
2045           If unsure, say N
2046 
2047 if ARM64_PSEUDO_NMI
2048 config ARM64_DEBUG_PRIORITY_MASKING
2049         bool "Debug interrupt priority masking"
2050         help
2051           This adds runtime checks to functions enabling/disabling
2052           interrupts when using priority masking. The additional checks verify
2053           the validity of ICC_PMR_EL1 when calling concerned functions.
2054 
2055           If unsure, say N
2056 endif # ARM64_PSEUDO_NMI
2057 
2058 config RELOCATABLE
2059         bool "Build a relocatable kernel image" if EXPERT
2060         select ARCH_HAS_RELR
2061         default y
2062         help
2063           This builds the kernel as a Position Independent Executable (PIE),
2064           which retains all relocation metadata required to relocate the
2065           kernel binary at runtime to a different virtual address than the
2066           address it was linked at.
2067           Since AArch64 uses the RELA relocation format, this requires a
2068           relocation pass at runtime even if the kernel is loaded at the
2069           same address it was linked at.
2070 
2071 config RANDOMIZE_BASE
2072         bool "Randomize the address of the kernel image"
2073         select ARM64_MODULE_PLTS if MODULES
2074         select RELOCATABLE
2075         help
2076           Randomizes the virtual address at which the kernel image is
2077           loaded, as a security feature that deters exploit attempts
2078           relying on knowledge of the location of kernel internals.
2079 
2080           It is the bootloader's job to provide entropy, by passing a
2081           random u64 value in /chosen/kaslr-seed at kernel entry.
2082 
2083           When booting via the UEFI stub, it will invoke the firmware's
2084           EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2085           to the kernel proper. In addition, it will randomise the physical
2086           location of the kernel Image as well.
2087 
2088           If unsure, say N.
2089 
2090 config RANDOMIZE_MODULE_REGION_FULL
2091         bool "Randomize the module region over a 2 GB range"
2092         depends on RANDOMIZE_BASE
2093         default y
2094         help
2095           Randomizes the location of the module region inside a 2 GB window
2096           covering the core kernel. This way, it is less likely for modules
2097           to leak information about the location of core kernel data structures
2098           but it does imply that function calls between modules and the core
2099           kernel will need to be resolved via veneers in the module PLT.
2100 
2101           When this option is not set, the module region will be randomized over
2102           a limited range that contains the [_stext, _etext] interval of the
2103           core kernel, so branch relocations are almost always in range unless
2104           ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2105           particular case of region exhaustion, modules might be able to fall
2106           back to a larger 2GB area.
2107 
2108 config CC_HAVE_STACKPROTECTOR_SYSREG
2109         def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2110 
2111 config STACKPROTECTOR_PER_TASK
2112         def_bool y
2113         depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2114 
2115 # The GPIO number here must be sorted by descending number. In case of
2116 # a multiplatform kernel, we just want the highest value required by the
2117 # selected platforms.
2118 config ARCH_NR_GPIO
2119         int
2120         default 2048 if ARCH_APPLE
2121         default 0
2122         help
2123           Maximum number of GPIOs in the system.
2124 
2125           If unsure, leave the default value.
2126 
2127 endmenu # "Kernel Features"
2128 
2129 menu "Boot options"
2130 
2131 config ARM64_ACPI_PARKING_PROTOCOL
2132         bool "Enable support for the ARM64 ACPI parking protocol"
2133         depends on ACPI
2134         help
2135           Enable support for the ARM64 ACPI parking protocol. If disabled
2136           the kernel will not allow booting through the ARM64 ACPI parking
2137           protocol even if the corresponding data is present in the ACPI
2138           MADT table.
2139 
2140 config CMDLINE
2141         string "Default kernel command string"
2142         default ""
2143         help
2144           Provide a set of default command-line options at build time by
2145           entering them here. As a minimum, you should specify the the
2146           root device (e.g. root=/dev/nfs).
2147 
2148 choice
2149         prompt "Kernel command line type" if CMDLINE != ""
2150         default CMDLINE_FROM_BOOTLOADER
2151         help
2152           Choose how the kernel will handle the provided default kernel
2153           command line string.
2154 
2155 config CMDLINE_FROM_BOOTLOADER
2156         bool "Use bootloader kernel arguments if available"
2157         help
2158           Uses the command-line options passed by the boot loader. If
2159           the boot loader doesn't provide any, the default kernel command
2160           string provided in CMDLINE will be used.
2161 
2162 config CMDLINE_FORCE
2163         bool "Always use the default kernel command string"
2164         help
2165           Always use the default kernel command string, even if the boot
2166           loader passes other arguments to the kernel.
2167           This is useful if you cannot or don't want to change the
2168           command-line options your boot loader passes to the kernel.
2169 
2170 endchoice
2171 
2172 config EFI_STUB
2173         bool
2174 
2175 config EFI
2176         bool "UEFI runtime support"
2177         depends on OF && !CPU_BIG_ENDIAN
2178         depends on KERNEL_MODE_NEON
2179         select ARCH_SUPPORTS_ACPI
2180         select LIBFDT
2181         select UCS2_STRING
2182         select EFI_PARAMS_FROM_FDT
2183         select EFI_RUNTIME_WRAPPERS
2184         select EFI_STUB
2185         select EFI_GENERIC_STUB
2186         imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2187         default y
2188         help
2189           This option provides support for runtime services provided
2190           by UEFI firmware (such as non-volatile variables, realtime
2191           clock, and platform reset). A UEFI stub is also provided to
2192           allow the kernel to be booted as an EFI application. This
2193           is only useful on systems that have UEFI firmware.
2194 
2195 config DMI
2196         bool "Enable support for SMBIOS (DMI) tables"
2197         depends on EFI
2198         default y
2199         help
2200           This enables SMBIOS/DMI feature for systems.
2201 
2202           This option is only useful on systems that have UEFI firmware.
2203           However, even with this option, the resultant kernel should
2204           continue to boot on existing non-UEFI platforms.
2205 
2206 endmenu # "Boot options"
2207 
2208 menu "Power management options"
2209 
2210 source "kernel/power/Kconfig"
2211 
2212 config ARCH_HIBERNATION_POSSIBLE
2213         def_bool y
2214         depends on CPU_PM
2215 
2216 config ARCH_HIBERNATION_HEADER
2217         def_bool y
2218         depends on HIBERNATION
2219 
2220 config ARCH_SUSPEND_POSSIBLE
2221         def_bool y
2222 
2223 endmenu # "Power management options"
2224 
2225 menu "CPU Power Management"
2226 
2227 source "drivers/cpuidle/Kconfig"
2228 
2229 source "drivers/cpufreq/Kconfig"
2230 
2231 endmenu # "CPU Power Management"
2232 
2233 source "drivers/acpi/Kconfig"
2234 
2235 source "arch/arm64/kvm/Kconfig"
2236 
2237 if CRYPTO
2238 source "arch/arm64/crypto/Kconfig"
2239 endif # CRYPTO