0001 # SPDX-License-Identifier: GPL-2.0-only
0002 config ARM64
0003 def_bool y
0004 select ACPI_CCA_REQUIRED if ACPI
0005 select ACPI_GENERIC_GSI if ACPI
0006 select ACPI_GTDT if ACPI
0007 select ACPI_IORT if ACPI
0008 select ACPI_REDUCED_HARDWARE_ONLY if ACPI
0009 select ACPI_MCFG if (ACPI && PCI)
0010 select ACPI_SPCR_TABLE if ACPI
0011 select ACPI_PPTT if ACPI
0012 select ARCH_HAS_DEBUG_WX
0013 select ARCH_BINFMT_ELF_EXTRA_PHDRS
0014 select ARCH_BINFMT_ELF_STATE
0015 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
0016 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
0017 select ARCH_ENABLE_MEMORY_HOTPLUG
0018 select ARCH_ENABLE_MEMORY_HOTREMOVE
0019 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
0020 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
0021 select ARCH_HAS_CACHE_LINE_SIZE
0022 select ARCH_HAS_CURRENT_STACK_POINTER
0023 select ARCH_HAS_DEBUG_VIRTUAL
0024 select ARCH_HAS_DEBUG_VM_PGTABLE
0025 select ARCH_HAS_DMA_PREP_COHERENT
0026 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
0027 select ARCH_HAS_FAST_MULTIPLIER
0028 select ARCH_HAS_FORTIFY_SOURCE
0029 select ARCH_HAS_GCOV_PROFILE_ALL
0030 select ARCH_HAS_GIGANTIC_PAGE
0031 select ARCH_HAS_KCOV
0032 select ARCH_HAS_KEEPINITRD
0033 select ARCH_HAS_MEMBARRIER_SYNC_CORE
0034 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
0035 select ARCH_HAS_PTE_DEVMAP
0036 select ARCH_HAS_PTE_SPECIAL
0037 select ARCH_HAS_SETUP_DMA_OPS
0038 select ARCH_HAS_SET_DIRECT_MAP
0039 select ARCH_HAS_SET_MEMORY
0040 select ARCH_STACKWALK
0041 select ARCH_HAS_STRICT_KERNEL_RWX
0042 select ARCH_HAS_STRICT_MODULE_RWX
0043 select ARCH_HAS_SYNC_DMA_FOR_DEVICE
0044 select ARCH_HAS_SYNC_DMA_FOR_CPU
0045 select ARCH_HAS_SYSCALL_WRAPPER
0046 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
0047 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
0048 select ARCH_HAS_ZONE_DMA_SET if EXPERT
0049 select ARCH_HAVE_ELF_PROT
0050 select ARCH_HAVE_NMI_SAFE_CMPXCHG
0051 select ARCH_HAVE_TRACE_MMIO_ACCESS
0052 select ARCH_INLINE_READ_LOCK if !PREEMPTION
0053 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
0054 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
0055 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
0056 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
0057 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
0058 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
0059 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
0060 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
0061 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
0062 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
0063 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
0064 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
0065 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
0066 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
0067 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
0068 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
0069 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
0070 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
0071 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
0072 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
0073 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
0074 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
0075 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
0076 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
0077 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
0078 select ARCH_KEEP_MEMBLOCK
0079 select ARCH_USE_CMPXCHG_LOCKREF
0080 select ARCH_USE_GNU_PROPERTY
0081 select ARCH_USE_MEMTEST
0082 select ARCH_USE_QUEUED_RWLOCKS
0083 select ARCH_USE_QUEUED_SPINLOCKS
0084 select ARCH_USE_SYM_ANNOTATIONS
0085 select ARCH_SUPPORTS_DEBUG_PAGEALLOC
0086 select ARCH_SUPPORTS_HUGETLBFS
0087 select ARCH_SUPPORTS_MEMORY_FAILURE
0088 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
0089 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
0090 select ARCH_SUPPORTS_LTO_CLANG_THIN
0091 select ARCH_SUPPORTS_CFI_CLANG
0092 select ARCH_SUPPORTS_ATOMIC_RMW
0093 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
0094 select ARCH_SUPPORTS_NUMA_BALANCING
0095 select ARCH_SUPPORTS_PAGE_TABLE_CHECK
0096 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
0097 select ARCH_WANT_DEFAULT_BPF_JIT
0098 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
0099 select ARCH_WANT_FRAME_POINTERS
0100 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
0101 select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
0102 select ARCH_WANT_LD_ORPHAN_WARN
0103 select ARCH_WANTS_NO_INSTR
0104 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
0105 select ARCH_HAS_UBSAN_SANITIZE_ALL
0106 select ARM_AMBA
0107 select ARM_ARCH_TIMER
0108 select ARM_GIC
0109 select AUDIT_ARCH_COMPAT_GENERIC
0110 select ARM_GIC_V2M if PCI
0111 select ARM_GIC_V3
0112 select ARM_GIC_V3_ITS if PCI
0113 select ARM_PSCI_FW
0114 select BUILDTIME_TABLE_SORT
0115 select CLONE_BACKWARDS
0116 select COMMON_CLK
0117 select CPU_PM if (SUSPEND || CPU_IDLE)
0118 select CRC32
0119 select DCACHE_WORD_ACCESS
0120 select DMA_DIRECT_REMAP
0121 select EDAC_SUPPORT
0122 select FRAME_POINTER
0123 select GENERIC_ALLOCATOR
0124 select GENERIC_ARCH_TOPOLOGY
0125 select GENERIC_CLOCKEVENTS_BROADCAST
0126 select GENERIC_CPU_AUTOPROBE
0127 select GENERIC_CPU_VULNERABILITIES
0128 select GENERIC_EARLY_IOREMAP
0129 select GENERIC_IDLE_POLL_SETUP
0130 select GENERIC_IOREMAP
0131 select GENERIC_IRQ_IPI
0132 select GENERIC_IRQ_PROBE
0133 select GENERIC_IRQ_SHOW
0134 select GENERIC_IRQ_SHOW_LEVEL
0135 select GENERIC_LIB_DEVMEM_IS_ALLOWED
0136 select GENERIC_PCI_IOMAP
0137 select GENERIC_PTDUMP
0138 select GENERIC_SCHED_CLOCK
0139 select GENERIC_SMP_IDLE_THREAD
0140 select GENERIC_TIME_VSYSCALL
0141 select GENERIC_GETTIMEOFDAY
0142 select GENERIC_VDSO_TIME_NS
0143 select HARDIRQS_SW_RESEND
0144 select HAVE_MOVE_PMD
0145 select HAVE_MOVE_PUD
0146 select HAVE_PCI
0147 select HAVE_ACPI_APEI if (ACPI && EFI)
0148 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
0149 select HAVE_ARCH_AUDITSYSCALL
0150 select HAVE_ARCH_BITREVERSE
0151 select HAVE_ARCH_COMPILER_H
0152 select HAVE_ARCH_HUGE_VMAP
0153 select HAVE_ARCH_JUMP_LABEL
0154 select HAVE_ARCH_JUMP_LABEL_RELATIVE
0155 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
0156 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
0157 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
0158 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
0159 # Some instrumentation may be unsound, hence EXPERT
0160 select HAVE_ARCH_KCSAN if EXPERT
0161 select HAVE_ARCH_KFENCE
0162 select HAVE_ARCH_KGDB
0163 select HAVE_ARCH_MMAP_RND_BITS
0164 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
0165 select HAVE_ARCH_PREL32_RELOCATIONS
0166 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
0167 select HAVE_ARCH_SECCOMP_FILTER
0168 select HAVE_ARCH_STACKLEAK
0169 select HAVE_ARCH_THREAD_STRUCT_WHITELIST
0170 select HAVE_ARCH_TRACEHOOK
0171 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
0172 select HAVE_ARCH_VMAP_STACK
0173 select HAVE_ARM_SMCCC
0174 select HAVE_ASM_MODVERSIONS
0175 select HAVE_EBPF_JIT
0176 select HAVE_C_RECORDMCOUNT
0177 select HAVE_CMPXCHG_DOUBLE
0178 select HAVE_CMPXCHG_LOCAL
0179 select HAVE_CONTEXT_TRACKING_USER
0180 select HAVE_DEBUG_KMEMLEAK
0181 select HAVE_DMA_CONTIGUOUS
0182 select HAVE_DYNAMIC_FTRACE
0183 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
0184 if DYNAMIC_FTRACE_WITH_REGS
0185 select HAVE_EFFICIENT_UNALIGNED_ACCESS
0186 select HAVE_FAST_GUP
0187 select HAVE_FTRACE_MCOUNT_RECORD
0188 select HAVE_FUNCTION_TRACER
0189 select HAVE_FUNCTION_ERROR_INJECTION
0190 select HAVE_FUNCTION_GRAPH_TRACER
0191 select HAVE_GCC_PLUGINS
0192 select HAVE_HW_BREAKPOINT if PERF_EVENTS
0193 select HAVE_IOREMAP_PROT
0194 select HAVE_IRQ_TIME_ACCOUNTING
0195 select HAVE_KVM
0196 select HAVE_NMI
0197 select HAVE_PATA_PLATFORM
0198 select HAVE_PERF_EVENTS
0199 select HAVE_PERF_REGS
0200 select HAVE_PERF_USER_STACK_DUMP
0201 select HAVE_PREEMPT_DYNAMIC_KEY
0202 select HAVE_REGS_AND_STACK_ACCESS_API
0203 select HAVE_POSIX_CPU_TIMERS_TASK_WORK
0204 select HAVE_FUNCTION_ARG_ACCESS_API
0205 select MMU_GATHER_RCU_TABLE_FREE
0206 select HAVE_RSEQ
0207 select HAVE_STACKPROTECTOR
0208 select HAVE_SYSCALL_TRACEPOINTS
0209 select HAVE_KPROBES
0210 select HAVE_KRETPROBES
0211 select HAVE_GENERIC_VDSO
0212 select IOMMU_DMA if IOMMU_SUPPORT
0213 select IRQ_DOMAIN
0214 select IRQ_FORCED_THREADING
0215 select KASAN_VMALLOC if KASAN
0216 select MODULES_USE_ELF_RELA
0217 select NEED_DMA_MAP_STATE
0218 select NEED_SG_DMA_LENGTH
0219 select OF
0220 select OF_EARLY_FLATTREE
0221 select PCI_DOMAINS_GENERIC if PCI
0222 select PCI_ECAM if (ACPI && PCI)
0223 select PCI_SYSCALL if PCI
0224 select POWER_RESET
0225 select POWER_SUPPLY
0226 select SPARSE_IRQ
0227 select SWIOTLB
0228 select SYSCTL_EXCEPTION_TRACE
0229 select THREAD_INFO_IN_TASK
0230 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
0231 select TRACE_IRQFLAGS_SUPPORT
0232 select TRACE_IRQFLAGS_NMI_SUPPORT
0233 help
0234 ARM 64-bit (AArch64) Linux support.
0235
0236 config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
0237 def_bool CC_IS_CLANG
0238 # https://github.com/ClangBuiltLinux/linux/issues/1507
0239 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
0240 select HAVE_DYNAMIC_FTRACE_WITH_REGS
0241
0242 config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
0243 def_bool CC_IS_GCC
0244 depends on $(cc-option,-fpatchable-function-entry=2)
0245 select HAVE_DYNAMIC_FTRACE_WITH_REGS
0246
0247 config 64BIT
0248 def_bool y
0249
0250 config MMU
0251 def_bool y
0252
0253 config ARM64_PAGE_SHIFT
0254 int
0255 default 16 if ARM64_64K_PAGES
0256 default 14 if ARM64_16K_PAGES
0257 default 12
0258
0259 config ARM64_CONT_PTE_SHIFT
0260 int
0261 default 5 if ARM64_64K_PAGES
0262 default 7 if ARM64_16K_PAGES
0263 default 4
0264
0265 config ARM64_CONT_PMD_SHIFT
0266 int
0267 default 5 if ARM64_64K_PAGES
0268 default 5 if ARM64_16K_PAGES
0269 default 4
0270
0271 config ARCH_MMAP_RND_BITS_MIN
0272 default 14 if ARM64_64K_PAGES
0273 default 16 if ARM64_16K_PAGES
0274 default 18
0275
0276 # max bits determined by the following formula:
0277 # VA_BITS - PAGE_SHIFT - 3
0278 config ARCH_MMAP_RND_BITS_MAX
0279 default 19 if ARM64_VA_BITS=36
0280 default 24 if ARM64_VA_BITS=39
0281 default 27 if ARM64_VA_BITS=42
0282 default 30 if ARM64_VA_BITS=47
0283 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
0284 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
0285 default 33 if ARM64_VA_BITS=48
0286 default 14 if ARM64_64K_PAGES
0287 default 16 if ARM64_16K_PAGES
0288 default 18
0289
0290 config ARCH_MMAP_RND_COMPAT_BITS_MIN
0291 default 7 if ARM64_64K_PAGES
0292 default 9 if ARM64_16K_PAGES
0293 default 11
0294
0295 config ARCH_MMAP_RND_COMPAT_BITS_MAX
0296 default 16
0297
0298 config NO_IOPORT_MAP
0299 def_bool y if !PCI
0300
0301 config STACKTRACE_SUPPORT
0302 def_bool y
0303
0304 config ILLEGAL_POINTER_VALUE
0305 hex
0306 default 0xdead000000000000
0307
0308 config LOCKDEP_SUPPORT
0309 def_bool y
0310
0311 config GENERIC_BUG
0312 def_bool y
0313 depends on BUG
0314
0315 config GENERIC_BUG_RELATIVE_POINTERS
0316 def_bool y
0317 depends on GENERIC_BUG
0318
0319 config GENERIC_HWEIGHT
0320 def_bool y
0321
0322 config GENERIC_CSUM
0323 def_bool y
0324
0325 config GENERIC_CALIBRATE_DELAY
0326 def_bool y
0327
0328 config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
0329 def_bool y
0330
0331 config SMP
0332 def_bool y
0333
0334 config KERNEL_MODE_NEON
0335 def_bool y
0336
0337 config FIX_EARLYCON_MEM
0338 def_bool y
0339
0340 config PGTABLE_LEVELS
0341 int
0342 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
0343 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
0344 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
0345 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
0346 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
0347 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
0348
0349 config ARCH_SUPPORTS_UPROBES
0350 def_bool y
0351
0352 config ARCH_PROC_KCORE_TEXT
0353 def_bool y
0354
0355 config BROKEN_GAS_INST
0356 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
0357
0358 config KASAN_SHADOW_OFFSET
0359 hex
0360 depends on KASAN_GENERIC || KASAN_SW_TAGS
0361 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
0362 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
0363 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
0364 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
0365 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
0366 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
0367 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
0368 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
0369 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
0370 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
0371 default 0xffffffffffffffff
0372
0373 source "arch/arm64/Kconfig.platforms"
0374
0375 menu "Kernel Features"
0376
0377 menu "ARM errata workarounds via the alternatives framework"
0378
0379 config ARM64_WORKAROUND_CLEAN_CACHE
0380 bool
0381
0382 config ARM64_ERRATUM_826319
0383 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
0384 default y
0385 select ARM64_WORKAROUND_CLEAN_CACHE
0386 help
0387 This option adds an alternative code sequence to work around ARM
0388 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
0389 AXI master interface and an L2 cache.
0390
0391 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
0392 and is unable to accept a certain write via this interface, it will
0393 not progress on read data presented on the read data channel and the
0394 system can deadlock.
0395
0396 The workaround promotes data cache clean instructions to
0397 data cache clean-and-invalidate.
0398 Please note that this does not necessarily enable the workaround,
0399 as it depends on the alternative framework, which will only patch
0400 the kernel if an affected CPU is detected.
0401
0402 If unsure, say Y.
0403
0404 config ARM64_ERRATUM_827319
0405 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
0406 default y
0407 select ARM64_WORKAROUND_CLEAN_CACHE
0408 help
0409 This option adds an alternative code sequence to work around ARM
0410 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
0411 master interface and an L2 cache.
0412
0413 Under certain conditions this erratum can cause a clean line eviction
0414 to occur at the same time as another transaction to the same address
0415 on the AMBA 5 CHI interface, which can cause data corruption if the
0416 interconnect reorders the two transactions.
0417
0418 The workaround promotes data cache clean instructions to
0419 data cache clean-and-invalidate.
0420 Please note that this does not necessarily enable the workaround,
0421 as it depends on the alternative framework, which will only patch
0422 the kernel if an affected CPU is detected.
0423
0424 If unsure, say Y.
0425
0426 config ARM64_ERRATUM_824069
0427 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
0428 default y
0429 select ARM64_WORKAROUND_CLEAN_CACHE
0430 help
0431 This option adds an alternative code sequence to work around ARM
0432 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
0433 to a coherent interconnect.
0434
0435 If a Cortex-A53 processor is executing a store or prefetch for
0436 write instruction at the same time as a processor in another
0437 cluster is executing a cache maintenance operation to the same
0438 address, then this erratum might cause a clean cache line to be
0439 incorrectly marked as dirty.
0440
0441 The workaround promotes data cache clean instructions to
0442 data cache clean-and-invalidate.
0443 Please note that this option does not necessarily enable the
0444 workaround, as it depends on the alternative framework, which will
0445 only patch the kernel if an affected CPU is detected.
0446
0447 If unsure, say Y.
0448
0449 config ARM64_ERRATUM_819472
0450 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
0451 default y
0452 select ARM64_WORKAROUND_CLEAN_CACHE
0453 help
0454 This option adds an alternative code sequence to work around ARM
0455 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
0456 present when it is connected to a coherent interconnect.
0457
0458 If the processor is executing a load and store exclusive sequence at
0459 the same time as a processor in another cluster is executing a cache
0460 maintenance operation to the same address, then this erratum might
0461 cause data corruption.
0462
0463 The workaround promotes data cache clean instructions to
0464 data cache clean-and-invalidate.
0465 Please note that this does not necessarily enable the workaround,
0466 as it depends on the alternative framework, which will only patch
0467 the kernel if an affected CPU is detected.
0468
0469 If unsure, say Y.
0470
0471 config ARM64_ERRATUM_832075
0472 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
0473 default y
0474 help
0475 This option adds an alternative code sequence to work around ARM
0476 erratum 832075 on Cortex-A57 parts up to r1p2.
0477
0478 Affected Cortex-A57 parts might deadlock when exclusive load/store
0479 instructions to Write-Back memory are mixed with Device loads.
0480
0481 The workaround is to promote device loads to use Load-Acquire
0482 semantics.
0483 Please note that this does not necessarily enable the workaround,
0484 as it depends on the alternative framework, which will only patch
0485 the kernel if an affected CPU is detected.
0486
0487 If unsure, say Y.
0488
0489 config ARM64_ERRATUM_834220
0490 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
0491 depends on KVM
0492 default y
0493 help
0494 This option adds an alternative code sequence to work around ARM
0495 erratum 834220 on Cortex-A57 parts up to r1p2.
0496
0497 Affected Cortex-A57 parts might report a Stage 2 translation
0498 fault as the result of a Stage 1 fault for load crossing a
0499 page boundary when there is a permission or device memory
0500 alignment fault at Stage 1 and a translation fault at Stage 2.
0501
0502 The workaround is to verify that the Stage 1 translation
0503 doesn't generate a fault before handling the Stage 2 fault.
0504 Please note that this does not necessarily enable the workaround,
0505 as it depends on the alternative framework, which will only patch
0506 the kernel if an affected CPU is detected.
0507
0508 If unsure, say Y.
0509
0510 config ARM64_ERRATUM_1742098
0511 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
0512 depends on COMPAT
0513 default y
0514 help
0515 This option removes the AES hwcap for aarch32 user-space to
0516 workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
0517
0518 Affected parts may corrupt the AES state if an interrupt is
0519 taken between a pair of AES instructions. These instructions
0520 are only present if the cryptography extensions are present.
0521 All software should have a fallback implementation for CPUs
0522 that don't implement the cryptography extensions.
0523
0524 If unsure, say Y.
0525
0526 config ARM64_ERRATUM_845719
0527 bool "Cortex-A53: 845719: a load might read incorrect data"
0528 depends on COMPAT
0529 default y
0530 help
0531 This option adds an alternative code sequence to work around ARM
0532 erratum 845719 on Cortex-A53 parts up to r0p4.
0533
0534 When running a compat (AArch32) userspace on an affected Cortex-A53
0535 part, a load at EL0 from a virtual address that matches the bottom 32
0536 bits of the virtual address used by a recent load at (AArch64) EL1
0537 might return incorrect data.
0538
0539 The workaround is to write the contextidr_el1 register on exception
0540 return to a 32-bit task.
0541 Please note that this does not necessarily enable the workaround,
0542 as it depends on the alternative framework, which will only patch
0543 the kernel if an affected CPU is detected.
0544
0545 If unsure, say Y.
0546
0547 config ARM64_ERRATUM_843419
0548 bool "Cortex-A53: 843419: A load or store might access an incorrect address"
0549 default y
0550 select ARM64_MODULE_PLTS if MODULES
0551 help
0552 This option links the kernel with '--fix-cortex-a53-843419' and
0553 enables PLT support to replace certain ADRP instructions, which can
0554 cause subsequent memory accesses to use an incorrect address on
0555 Cortex-A53 parts up to r0p4.
0556
0557 If unsure, say Y.
0558
0559 config ARM64_LD_HAS_FIX_ERRATUM_843419
0560 def_bool $(ld-option,--fix-cortex-a53-843419)
0561
0562 config ARM64_ERRATUM_1024718
0563 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
0564 default y
0565 help
0566 This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
0567
0568 Affected Cortex-A55 cores (all revisions) could cause incorrect
0569 update of the hardware dirty bit when the DBM/AP bits are updated
0570 without a break-before-make. The workaround is to disable the usage
0571 of hardware DBM locally on the affected cores. CPUs not affected by
0572 this erratum will continue to use the feature.
0573
0574 If unsure, say Y.
0575
0576 config ARM64_ERRATUM_1418040
0577 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
0578 default y
0579 depends on COMPAT
0580 help
0581 This option adds a workaround for ARM Cortex-A76/Neoverse-N1
0582 errata 1188873 and 1418040.
0583
0584 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
0585 cause register corruption when accessing the timer registers
0586 from AArch32 userspace.
0587
0588 If unsure, say Y.
0589
0590 config ARM64_WORKAROUND_SPECULATIVE_AT
0591 bool
0592
0593 config ARM64_ERRATUM_1165522
0594 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
0595 default y
0596 select ARM64_WORKAROUND_SPECULATIVE_AT
0597 help
0598 This option adds a workaround for ARM Cortex-A76 erratum 1165522.
0599
0600 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
0601 corrupted TLBs by speculating an AT instruction during a guest
0602 context switch.
0603
0604 If unsure, say Y.
0605
0606 config ARM64_ERRATUM_1319367
0607 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
0608 default y
0609 select ARM64_WORKAROUND_SPECULATIVE_AT
0610 help
0611 This option adds work arounds for ARM Cortex-A57 erratum 1319537
0612 and A72 erratum 1319367
0613
0614 Cortex-A57 and A72 cores could end-up with corrupted TLBs by
0615 speculating an AT instruction during a guest context switch.
0616
0617 If unsure, say Y.
0618
0619 config ARM64_ERRATUM_1530923
0620 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
0621 default y
0622 select ARM64_WORKAROUND_SPECULATIVE_AT
0623 help
0624 This option adds a workaround for ARM Cortex-A55 erratum 1530923.
0625
0626 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
0627 corrupted TLBs by speculating an AT instruction during a guest
0628 context switch.
0629
0630 If unsure, say Y.
0631
0632 config ARM64_WORKAROUND_REPEAT_TLBI
0633 bool
0634
0635 config ARM64_ERRATUM_1286807
0636 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
0637 default y
0638 select ARM64_WORKAROUND_REPEAT_TLBI
0639 help
0640 This option adds a workaround for ARM Cortex-A76 erratum 1286807.
0641
0642 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
0643 address for a cacheable mapping of a location is being
0644 accessed by a core while another core is remapping the virtual
0645 address to a new physical page using the recommended
0646 break-before-make sequence, then under very rare circumstances
0647 TLBI+DSB completes before a read using the translation being
0648 invalidated has been observed by other observers. The
0649 workaround repeats the TLBI+DSB operation.
0650
0651 config ARM64_ERRATUM_1463225
0652 bool "Cortex-A76: Software Step might prevent interrupt recognition"
0653 default y
0654 help
0655 This option adds a workaround for Arm Cortex-A76 erratum 1463225.
0656
0657 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
0658 of a system call instruction (SVC) can prevent recognition of
0659 subsequent interrupts when software stepping is disabled in the
0660 exception handler of the system call and either kernel debugging
0661 is enabled or VHE is in use.
0662
0663 Work around the erratum by triggering a dummy step exception
0664 when handling a system call from a task that is being stepped
0665 in a VHE configuration of the kernel.
0666
0667 If unsure, say Y.
0668
0669 config ARM64_ERRATUM_1542419
0670 bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
0671 default y
0672 help
0673 This option adds a workaround for ARM Neoverse-N1 erratum
0674 1542419.
0675
0676 Affected Neoverse-N1 cores could execute a stale instruction when
0677 modified by another CPU. The workaround depends on a firmware
0678 counterpart.
0679
0680 Workaround the issue by hiding the DIC feature from EL0. This
0681 forces user-space to perform cache maintenance.
0682
0683 If unsure, say Y.
0684
0685 config ARM64_ERRATUM_1508412
0686 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
0687 default y
0688 help
0689 This option adds a workaround for Arm Cortex-A77 erratum 1508412.
0690
0691 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
0692 of a store-exclusive or read of PAR_EL1 and a load with device or
0693 non-cacheable memory attributes. The workaround depends on a firmware
0694 counterpart.
0695
0696 KVM guests must also have the workaround implemented or they can
0697 deadlock the system.
0698
0699 Work around the issue by inserting DMB SY barriers around PAR_EL1
0700 register reads and warning KVM users. The DMB barrier is sufficient
0701 to prevent a speculative PAR_EL1 read.
0702
0703 If unsure, say Y.
0704
0705 config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
0706 bool
0707
0708 config ARM64_ERRATUM_2051678
0709 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
0710 default y
0711 help
0712 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
0713 Affected Cortex-A510 might not respect the ordering rules for
0714 hardware update of the page table's dirty bit. The workaround
0715 is to not enable the feature on affected CPUs.
0716
0717 If unsure, say Y.
0718
0719 config ARM64_ERRATUM_2077057
0720 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
0721 default y
0722 help
0723 This option adds the workaround for ARM Cortex-A510 erratum 2077057.
0724 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
0725 expected, but a Pointer Authentication trap is taken instead. The
0726 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
0727 EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
0728
0729 This can only happen when EL2 is stepping EL1.
0730
0731 When these conditions occur, the SPSR_EL2 value is unchanged from the
0732 previous guest entry, and can be restored from the in-memory copy.
0733
0734 If unsure, say Y.
0735
0736 config ARM64_ERRATUM_2119858
0737 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
0738 default y
0739 depends on CORESIGHT_TRBE
0740 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
0741 help
0742 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
0743
0744 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
0745 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
0746 the event of a WRAP event.
0747
0748 Work around the issue by always making sure we move the TRBPTR_EL1 by
0749 256 bytes before enabling the buffer and filling the first 256 bytes of
0750 the buffer with ETM ignore packets upon disabling.
0751
0752 If unsure, say Y.
0753
0754 config ARM64_ERRATUM_2139208
0755 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
0756 default y
0757 depends on CORESIGHT_TRBE
0758 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
0759 help
0760 This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
0761
0762 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
0763 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
0764 the event of a WRAP event.
0765
0766 Work around the issue by always making sure we move the TRBPTR_EL1 by
0767 256 bytes before enabling the buffer and filling the first 256 bytes of
0768 the buffer with ETM ignore packets upon disabling.
0769
0770 If unsure, say Y.
0771
0772 config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
0773 bool
0774
0775 config ARM64_ERRATUM_2054223
0776 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
0777 default y
0778 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
0779 help
0780 Enable workaround for ARM Cortex-A710 erratum 2054223
0781
0782 Affected cores may fail to flush the trace data on a TSB instruction, when
0783 the PE is in trace prohibited state. This will cause losing a few bytes
0784 of the trace cached.
0785
0786 Workaround is to issue two TSB consecutively on affected cores.
0787
0788 If unsure, say Y.
0789
0790 config ARM64_ERRATUM_2067961
0791 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
0792 default y
0793 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
0794 help
0795 Enable workaround for ARM Neoverse-N2 erratum 2067961
0796
0797 Affected cores may fail to flush the trace data on a TSB instruction, when
0798 the PE is in trace prohibited state. This will cause losing a few bytes
0799 of the trace cached.
0800
0801 Workaround is to issue two TSB consecutively on affected cores.
0802
0803 If unsure, say Y.
0804
0805 config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
0806 bool
0807
0808 config ARM64_ERRATUM_2253138
0809 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
0810 depends on CORESIGHT_TRBE
0811 default y
0812 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
0813 help
0814 This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
0815
0816 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
0817 for TRBE. Under some conditions, the TRBE might generate a write to the next
0818 virtually addressed page following the last page of the TRBE address space
0819 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
0820
0821 Work around this in the driver by always making sure that there is a
0822 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
0823
0824 If unsure, say Y.
0825
0826 config ARM64_ERRATUM_2224489
0827 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
0828 depends on CORESIGHT_TRBE
0829 default y
0830 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
0831 help
0832 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
0833
0834 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
0835 for TRBE. Under some conditions, the TRBE might generate a write to the next
0836 virtually addressed page following the last page of the TRBE address space
0837 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
0838
0839 Work around this in the driver by always making sure that there is a
0840 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
0841
0842 If unsure, say Y.
0843
0844 config ARM64_ERRATUM_2441009
0845 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
0846 default y
0847 select ARM64_WORKAROUND_REPEAT_TLBI
0848 help
0849 This option adds a workaround for ARM Cortex-A510 erratum #2441009.
0850
0851 Under very rare circumstances, affected Cortex-A510 CPUs
0852 may not handle a race between a break-before-make sequence on one
0853 CPU, and another CPU accessing the same page. This could allow a
0854 store to a page that has been unmapped.
0855
0856 Work around this by adding the affected CPUs to the list that needs
0857 TLB sequences to be done twice.
0858
0859 If unsure, say Y.
0860
0861 config ARM64_ERRATUM_2064142
0862 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
0863 depends on CORESIGHT_TRBE
0864 default y
0865 help
0866 This option adds the workaround for ARM Cortex-A510 erratum 2064142.
0867
0868 Affected Cortex-A510 core might fail to write into system registers after the
0869 TRBE has been disabled. Under some conditions after the TRBE has been disabled
0870 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
0871 and TRBTRG_EL1 will be ignored and will not be effected.
0872
0873 Work around this in the driver by executing TSB CSYNC and DSB after collection
0874 is stopped and before performing a system register write to one of the affected
0875 registers.
0876
0877 If unsure, say Y.
0878
0879 config ARM64_ERRATUM_2038923
0880 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
0881 depends on CORESIGHT_TRBE
0882 default y
0883 help
0884 This option adds the workaround for ARM Cortex-A510 erratum 2038923.
0885
0886 Affected Cortex-A510 core might cause an inconsistent view on whether trace is
0887 prohibited within the CPU. As a result, the trace buffer or trace buffer state
0888 might be corrupted. This happens after TRBE buffer has been enabled by setting
0889 TRBLIMITR_EL1.E, followed by just a single context synchronization event before
0890 execution changes from a context, in which trace is prohibited to one where it
0891 isn't, or vice versa. In these mentioned conditions, the view of whether trace
0892 is prohibited is inconsistent between parts of the CPU, and the trace buffer or
0893 the trace buffer state might be corrupted.
0894
0895 Work around this in the driver by preventing an inconsistent view of whether the
0896 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
0897 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
0898 two ISB instructions if no ERET is to take place.
0899
0900 If unsure, say Y.
0901
0902 config ARM64_ERRATUM_1902691
0903 bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
0904 depends on CORESIGHT_TRBE
0905 default y
0906 help
0907 This option adds the workaround for ARM Cortex-A510 erratum 1902691.
0908
0909 Affected Cortex-A510 core might cause trace data corruption, when being written
0910 into the memory. Effectively TRBE is broken and hence cannot be used to capture
0911 trace data.
0912
0913 Work around this problem in the driver by just preventing TRBE initialization on
0914 affected cpus. The firmware must have disabled the access to TRBE for the kernel
0915 on such implementations. This will cover the kernel for any firmware that doesn't
0916 do this already.
0917
0918 If unsure, say Y.
0919
0920 config ARM64_ERRATUM_2457168
0921 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
0922 depends on ARM64_AMU_EXTN
0923 default y
0924 help
0925 This option adds the workaround for ARM Cortex-A510 erratum 2457168.
0926
0927 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
0928 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
0929 incorrectly giving a significantly higher output value.
0930
0931 Work around this problem by returning 0 when reading the affected counter in
0932 key locations that results in disabling all users of this counter. This effect
0933 is the same to firmware disabling affected counters.
0934
0935 If unsure, say Y.
0936
0937 config CAVIUM_ERRATUM_22375
0938 bool "Cavium erratum 22375, 24313"
0939 default y
0940 help
0941 Enable workaround for errata 22375 and 24313.
0942
0943 This implements two gicv3-its errata workarounds for ThunderX. Both
0944 with a small impact affecting only ITS table allocation.
0945
0946 erratum 22375: only alloc 8MB table size
0947 erratum 24313: ignore memory access type
0948
0949 The fixes are in ITS initialization and basically ignore memory access
0950 type and table size provided by the TYPER and BASER registers.
0951
0952 If unsure, say Y.
0953
0954 config CAVIUM_ERRATUM_23144
0955 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
0956 depends on NUMA
0957 default y
0958 help
0959 ITS SYNC command hang for cross node io and collections/cpu mapping.
0960
0961 If unsure, say Y.
0962
0963 config CAVIUM_ERRATUM_23154
0964 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
0965 default y
0966 help
0967 The ThunderX GICv3 implementation requires a modified version for
0968 reading the IAR status to ensure data synchronization
0969 (access to icc_iar1_el1 is not sync'ed before and after).
0970
0971 It also suffers from erratum 38545 (also present on Marvell's
0972 OcteonTX and OcteonTX2), resulting in deactivated interrupts being
0973 spuriously presented to the CPU interface.
0974
0975 If unsure, say Y.
0976
0977 config CAVIUM_ERRATUM_27456
0978 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
0979 default y
0980 help
0981 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
0982 instructions may cause the icache to become corrupted if it
0983 contains data for a non-current ASID. The fix is to
0984 invalidate the icache when changing the mm context.
0985
0986 If unsure, say Y.
0987
0988 config CAVIUM_ERRATUM_30115
0989 bool "Cavium erratum 30115: Guest may disable interrupts in host"
0990 default y
0991 help
0992 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
0993 1.2, and T83 Pass 1.0, KVM guest execution may disable
0994 interrupts in host. Trapping both GICv3 group-0 and group-1
0995 accesses sidesteps the issue.
0996
0997 If unsure, say Y.
0998
0999 config CAVIUM_TX2_ERRATUM_219
1000 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1001 default y
1002 help
1003 On Cavium ThunderX2, a load, store or prefetch instruction between a
1004 TTBR update and the corresponding context synchronizing operation can
1005 cause a spurious Data Abort to be delivered to any hardware thread in
1006 the CPU core.
1007
1008 Work around the issue by avoiding the problematic code sequence and
1009 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1010 trap handler performs the corresponding register access, skips the
1011 instruction and ensures context synchronization by virtue of the
1012 exception return.
1013
1014 If unsure, say Y.
1015
1016 config FUJITSU_ERRATUM_010001
1017 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1018 default y
1019 help
1020 This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1021 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1022 accesses may cause undefined fault (Data abort, DFSC=0b111111).
1023 This fault occurs under a specific hardware condition when a
1024 load/store instruction performs an address translation using:
1025 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1026 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1027 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1028 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1029
1030 The workaround is to ensure these bits are clear in TCR_ELx.
1031 The workaround only affects the Fujitsu-A64FX.
1032
1033 If unsure, say Y.
1034
1035 config HISILICON_ERRATUM_161600802
1036 bool "Hip07 161600802: Erroneous redistributor VLPI base"
1037 default y
1038 help
1039 The HiSilicon Hip07 SoC uses the wrong redistributor base
1040 when issued ITS commands such as VMOVP and VMAPP, and requires
1041 a 128kB offset to be applied to the target address in this commands.
1042
1043 If unsure, say Y.
1044
1045 config QCOM_FALKOR_ERRATUM_1003
1046 bool "Falkor E1003: Incorrect translation due to ASID change"
1047 default y
1048 help
1049 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1050 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1051 in TTBR1_EL1, this situation only occurs in the entry trampoline and
1052 then only for entries in the walk cache, since the leaf translation
1053 is unchanged. Work around the erratum by invalidating the walk cache
1054 entries for the trampoline before entering the kernel proper.
1055
1056 config QCOM_FALKOR_ERRATUM_1009
1057 bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1058 default y
1059 select ARM64_WORKAROUND_REPEAT_TLBI
1060 help
1061 On Falkor v1, the CPU may prematurely complete a DSB following a
1062 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1063 one more time to fix the issue.
1064
1065 If unsure, say Y.
1066
1067 config QCOM_QDF2400_ERRATUM_0065
1068 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1069 default y
1070 help
1071 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1072 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1073 been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1074
1075 If unsure, say Y.
1076
1077 config QCOM_FALKOR_ERRATUM_E1041
1078 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1079 default y
1080 help
1081 Falkor CPU may speculatively fetch instructions from an improper
1082 memory location when MMU translation is changed from SCTLR_ELn[M]=1
1083 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1084
1085 If unsure, say Y.
1086
1087 config NVIDIA_CARMEL_CNP_ERRATUM
1088 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1089 default y
1090 help
1091 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1092 invalidate shared TLB entries installed by a different core, as it would
1093 on standard ARM cores.
1094
1095 If unsure, say Y.
1096
1097 config SOCIONEXT_SYNQUACER_PREITS
1098 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1099 default y
1100 help
1101 Socionext Synquacer SoCs implement a separate h/w block to generate
1102 MSI doorbell writes with non-zero values for the device ID.
1103
1104 If unsure, say Y.
1105
1106 endmenu # "ARM errata workarounds via the alternatives framework"
1107
1108 choice
1109 prompt "Page size"
1110 default ARM64_4K_PAGES
1111 help
1112 Page size (translation granule) configuration.
1113
1114 config ARM64_4K_PAGES
1115 bool "4KB"
1116 help
1117 This feature enables 4KB pages support.
1118
1119 config ARM64_16K_PAGES
1120 bool "16KB"
1121 help
1122 The system will use 16KB pages support. AArch32 emulation
1123 requires applications compiled with 16K (or a multiple of 16K)
1124 aligned segments.
1125
1126 config ARM64_64K_PAGES
1127 bool "64KB"
1128 help
1129 This feature enables 64KB pages support (4KB by default)
1130 allowing only two levels of page tables and faster TLB
1131 look-up. AArch32 emulation requires applications compiled
1132 with 64K aligned segments.
1133
1134 endchoice
1135
1136 choice
1137 prompt "Virtual address space size"
1138 default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1139 default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1140 default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1141 help
1142 Allows choosing one of multiple possible virtual address
1143 space sizes. The level of translation table is determined by
1144 a combination of page size and virtual address space size.
1145
1146 config ARM64_VA_BITS_36
1147 bool "36-bit" if EXPERT
1148 depends on ARM64_16K_PAGES
1149
1150 config ARM64_VA_BITS_39
1151 bool "39-bit"
1152 depends on ARM64_4K_PAGES
1153
1154 config ARM64_VA_BITS_42
1155 bool "42-bit"
1156 depends on ARM64_64K_PAGES
1157
1158 config ARM64_VA_BITS_47
1159 bool "47-bit"
1160 depends on ARM64_16K_PAGES
1161
1162 config ARM64_VA_BITS_48
1163 bool "48-bit"
1164
1165 config ARM64_VA_BITS_52
1166 bool "52-bit"
1167 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1168 help
1169 Enable 52-bit virtual addressing for userspace when explicitly
1170 requested via a hint to mmap(). The kernel will also use 52-bit
1171 virtual addresses for its own mappings (provided HW support for
1172 this feature is available, otherwise it reverts to 48-bit).
1173
1174 NOTE: Enabling 52-bit virtual addressing in conjunction with
1175 ARMv8.3 Pointer Authentication will result in the PAC being
1176 reduced from 7 bits to 3 bits, which may have a significant
1177 impact on its susceptibility to brute-force attacks.
1178
1179 If unsure, select 48-bit virtual addressing instead.
1180
1181 endchoice
1182
1183 config ARM64_FORCE_52BIT
1184 bool "Force 52-bit virtual addresses for userspace"
1185 depends on ARM64_VA_BITS_52 && EXPERT
1186 help
1187 For systems with 52-bit userspace VAs enabled, the kernel will attempt
1188 to maintain compatibility with older software by providing 48-bit VAs
1189 unless a hint is supplied to mmap.
1190
1191 This configuration option disables the 48-bit compatibility logic, and
1192 forces all userspace addresses to be 52-bit on HW that supports it. One
1193 should only enable this configuration option for stress testing userspace
1194 memory management code. If unsure say N here.
1195
1196 config ARM64_VA_BITS
1197 int
1198 default 36 if ARM64_VA_BITS_36
1199 default 39 if ARM64_VA_BITS_39
1200 default 42 if ARM64_VA_BITS_42
1201 default 47 if ARM64_VA_BITS_47
1202 default 48 if ARM64_VA_BITS_48
1203 default 52 if ARM64_VA_BITS_52
1204
1205 choice
1206 prompt "Physical address space size"
1207 default ARM64_PA_BITS_48
1208 help
1209 Choose the maximum physical address range that the kernel will
1210 support.
1211
1212 config ARM64_PA_BITS_48
1213 bool "48-bit"
1214
1215 config ARM64_PA_BITS_52
1216 bool "52-bit (ARMv8.2)"
1217 depends on ARM64_64K_PAGES
1218 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1219 help
1220 Enable support for a 52-bit physical address space, introduced as
1221 part of the ARMv8.2-LPA extension.
1222
1223 With this enabled, the kernel will also continue to work on CPUs that
1224 do not support ARMv8.2-LPA, but with some added memory overhead (and
1225 minor performance overhead).
1226
1227 endchoice
1228
1229 config ARM64_PA_BITS
1230 int
1231 default 48 if ARM64_PA_BITS_48
1232 default 52 if ARM64_PA_BITS_52
1233
1234 choice
1235 prompt "Endianness"
1236 default CPU_LITTLE_ENDIAN
1237 help
1238 Select the endianness of data accesses performed by the CPU. Userspace
1239 applications will need to be compiled and linked for the endianness
1240 that is selected here.
1241
1242 config CPU_BIG_ENDIAN
1243 bool "Build big-endian kernel"
1244 depends on !LD_IS_LLD || LLD_VERSION >= 130000
1245 help
1246 Say Y if you plan on running a kernel with a big-endian userspace.
1247
1248 config CPU_LITTLE_ENDIAN
1249 bool "Build little-endian kernel"
1250 help
1251 Say Y if you plan on running a kernel with a little-endian userspace.
1252 This is usually the case for distributions targeting arm64.
1253
1254 endchoice
1255
1256 config SCHED_MC
1257 bool "Multi-core scheduler support"
1258 help
1259 Multi-core scheduler support improves the CPU scheduler's decision
1260 making when dealing with multi-core CPU chips at a cost of slightly
1261 increased overhead in some places. If unsure say N here.
1262
1263 config SCHED_CLUSTER
1264 bool "Cluster scheduler support"
1265 help
1266 Cluster scheduler support improves the CPU scheduler's decision
1267 making when dealing with machines that have clusters of CPUs.
1268 Cluster usually means a couple of CPUs which are placed closely
1269 by sharing mid-level caches, last-level cache tags or internal
1270 busses.
1271
1272 config SCHED_SMT
1273 bool "SMT scheduler support"
1274 help
1275 Improves the CPU scheduler's decision making when dealing with
1276 MultiThreading at a cost of slightly increased overhead in some
1277 places. If unsure say N here.
1278
1279 config NR_CPUS
1280 int "Maximum number of CPUs (2-4096)"
1281 range 2 4096
1282 default "256"
1283
1284 config HOTPLUG_CPU
1285 bool "Support for hot-pluggable CPUs"
1286 select GENERIC_IRQ_MIGRATION
1287 help
1288 Say Y here to experiment with turning CPUs off and on. CPUs
1289 can be controlled through /sys/devices/system/cpu.
1290
1291 # Common NUMA Features
1292 config NUMA
1293 bool "NUMA Memory Allocation and Scheduler Support"
1294 select GENERIC_ARCH_NUMA
1295 select ACPI_NUMA if ACPI
1296 select OF_NUMA
1297 select HAVE_SETUP_PER_CPU_AREA
1298 select NEED_PER_CPU_EMBED_FIRST_CHUNK
1299 select NEED_PER_CPU_PAGE_FIRST_CHUNK
1300 select USE_PERCPU_NUMA_NODE_ID
1301 help
1302 Enable NUMA (Non-Uniform Memory Access) support.
1303
1304 The kernel will try to allocate memory used by a CPU on the
1305 local memory of the CPU and add some more
1306 NUMA awareness to the kernel.
1307
1308 config NODES_SHIFT
1309 int "Maximum NUMA Nodes (as a power of 2)"
1310 range 1 10
1311 default "4"
1312 depends on NUMA
1313 help
1314 Specify the maximum number of NUMA Nodes available on the target
1315 system. Increases memory reserved to accommodate various tables.
1316
1317 source "kernel/Kconfig.hz"
1318
1319 config ARCH_SPARSEMEM_ENABLE
1320 def_bool y
1321 select SPARSEMEM_VMEMMAP_ENABLE
1322 select SPARSEMEM_VMEMMAP
1323
1324 config HW_PERF_EVENTS
1325 def_bool y
1326 depends on ARM_PMU
1327
1328 # Supported by clang >= 7.0 or GCC >= 12.0.0
1329 config CC_HAVE_SHADOW_CALL_STACK
1330 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1331
1332 config PARAVIRT
1333 bool "Enable paravirtualization code"
1334 help
1335 This changes the kernel so it can modify itself when it is run
1336 under a hypervisor, potentially improving performance significantly
1337 over full virtualization.
1338
1339 config PARAVIRT_TIME_ACCOUNTING
1340 bool "Paravirtual steal time accounting"
1341 select PARAVIRT
1342 help
1343 Select this option to enable fine granularity task steal time
1344 accounting. Time spent executing other tasks in parallel with
1345 the current vCPU is discounted from the vCPU power. To account for
1346 that, there can be a small performance impact.
1347
1348 If in doubt, say N here.
1349
1350 config KEXEC
1351 depends on PM_SLEEP_SMP
1352 select KEXEC_CORE
1353 bool "kexec system call"
1354 help
1355 kexec is a system call that implements the ability to shutdown your
1356 current kernel, and to start another kernel. It is like a reboot
1357 but it is independent of the system firmware. And like a reboot
1358 you can start any kernel with it, not just Linux.
1359
1360 config KEXEC_FILE
1361 bool "kexec file based system call"
1362 select KEXEC_CORE
1363 select HAVE_IMA_KEXEC if IMA
1364 help
1365 This is new version of kexec system call. This system call is
1366 file based and takes file descriptors as system call argument
1367 for kernel and initramfs as opposed to list of segments as
1368 accepted by previous system call.
1369
1370 config KEXEC_SIG
1371 bool "Verify kernel signature during kexec_file_load() syscall"
1372 depends on KEXEC_FILE
1373 help
1374 Select this option to verify a signature with loaded kernel
1375 image. If configured, any attempt of loading a image without
1376 valid signature will fail.
1377
1378 In addition to that option, you need to enable signature
1379 verification for the corresponding kernel image type being
1380 loaded in order for this to work.
1381
1382 config KEXEC_IMAGE_VERIFY_SIG
1383 bool "Enable Image signature verification support"
1384 default y
1385 depends on KEXEC_SIG
1386 depends on EFI && SIGNED_PE_FILE_VERIFICATION
1387 help
1388 Enable Image signature verification support.
1389
1390 comment "Support for PE file signature verification disabled"
1391 depends on KEXEC_SIG
1392 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1393
1394 config CRASH_DUMP
1395 bool "Build kdump crash kernel"
1396 help
1397 Generate crash dump after being started by kexec. This should
1398 be normally only set in special crash dump kernels which are
1399 loaded in the main kernel with kexec-tools into a specially
1400 reserved region and then later executed after a crash by
1401 kdump/kexec.
1402
1403 For more details see Documentation/admin-guide/kdump/kdump.rst
1404
1405 config TRANS_TABLE
1406 def_bool y
1407 depends on HIBERNATION || KEXEC_CORE
1408
1409 config XEN_DOM0
1410 def_bool y
1411 depends on XEN
1412
1413 config XEN
1414 bool "Xen guest support on ARM64"
1415 depends on ARM64 && OF
1416 select SWIOTLB_XEN
1417 select PARAVIRT
1418 help
1419 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1420
1421 config FORCE_MAX_ZONEORDER
1422 int
1423 default "14" if ARM64_64K_PAGES
1424 default "12" if ARM64_16K_PAGES
1425 default "11"
1426 help
1427 The kernel memory allocator divides physically contiguous memory
1428 blocks into "zones", where each zone is a power of two number of
1429 pages. This option selects the largest power of two that the kernel
1430 keeps in the memory allocator. If you need to allocate very large
1431 blocks of physically contiguous memory, then you may need to
1432 increase this value.
1433
1434 This config option is actually maximum order plus one. For example,
1435 a value of 11 means that the largest free memory block is 2^10 pages.
1436
1437 We make sure that we can allocate upto a HugePage size for each configuration.
1438 Hence we have :
1439 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1440
1441 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1442 4M allocations matching the default size used by generic code.
1443
1444 config UNMAP_KERNEL_AT_EL0
1445 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1446 default y
1447 help
1448 Speculation attacks against some high-performance processors can
1449 be used to bypass MMU permission checks and leak kernel data to
1450 userspace. This can be defended against by unmapping the kernel
1451 when running in userspace, mapping it back in on exception entry
1452 via a trampoline page in the vector table.
1453
1454 If unsure, say Y.
1455
1456 config MITIGATE_SPECTRE_BRANCH_HISTORY
1457 bool "Mitigate Spectre style attacks against branch history" if EXPERT
1458 default y
1459 help
1460 Speculation attacks against some high-performance processors can
1461 make use of branch history to influence future speculation.
1462 When taking an exception from user-space, a sequence of branches
1463 or a firmware call overwrites the branch history.
1464
1465 config RODATA_FULL_DEFAULT_ENABLED
1466 bool "Apply r/o permissions of VM areas also to their linear aliases"
1467 default y
1468 help
1469 Apply read-only attributes of VM areas to the linear alias of
1470 the backing pages as well. This prevents code or read-only data
1471 from being modified (inadvertently or intentionally) via another
1472 mapping of the same memory page. This additional enhancement can
1473 be turned off at runtime by passing rodata=[off|on] (and turned on
1474 with rodata=full if this option is set to 'n')
1475
1476 This requires the linear region to be mapped down to pages,
1477 which may adversely affect performance in some cases.
1478
1479 config ARM64_SW_TTBR0_PAN
1480 bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1481 help
1482 Enabling this option prevents the kernel from accessing
1483 user-space memory directly by pointing TTBR0_EL1 to a reserved
1484 zeroed area and reserved ASID. The user access routines
1485 restore the valid TTBR0_EL1 temporarily.
1486
1487 config ARM64_TAGGED_ADDR_ABI
1488 bool "Enable the tagged user addresses syscall ABI"
1489 default y
1490 help
1491 When this option is enabled, user applications can opt in to a
1492 relaxed ABI via prctl() allowing tagged addresses to be passed
1493 to system calls as pointer arguments. For details, see
1494 Documentation/arm64/tagged-address-abi.rst.
1495
1496 menuconfig COMPAT
1497 bool "Kernel support for 32-bit EL0"
1498 depends on ARM64_4K_PAGES || EXPERT
1499 select HAVE_UID16
1500 select OLD_SIGSUSPEND3
1501 select COMPAT_OLD_SIGACTION
1502 help
1503 This option enables support for a 32-bit EL0 running under a 64-bit
1504 kernel at EL1. AArch32-specific components such as system calls,
1505 the user helper functions, VFP support and the ptrace interface are
1506 handled appropriately by the kernel.
1507
1508 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1509 that you will only be able to execute AArch32 binaries that were compiled
1510 with page size aligned segments.
1511
1512 If you want to execute 32-bit userspace applications, say Y.
1513
1514 if COMPAT
1515
1516 config KUSER_HELPERS
1517 bool "Enable kuser helpers page for 32-bit applications"
1518 default y
1519 help
1520 Warning: disabling this option may break 32-bit user programs.
1521
1522 Provide kuser helpers to compat tasks. The kernel provides
1523 helper code to userspace in read only form at a fixed location
1524 to allow userspace to be independent of the CPU type fitted to
1525 the system. This permits binaries to be run on ARMv4 through
1526 to ARMv8 without modification.
1527
1528 See Documentation/arm/kernel_user_helpers.rst for details.
1529
1530 However, the fixed address nature of these helpers can be used
1531 by ROP (return orientated programming) authors when creating
1532 exploits.
1533
1534 If all of the binaries and libraries which run on your platform
1535 are built specifically for your platform, and make no use of
1536 these helpers, then you can turn this option off to hinder
1537 such exploits. However, in that case, if a binary or library
1538 relying on those helpers is run, it will not function correctly.
1539
1540 Say N here only if you are absolutely certain that you do not
1541 need these helpers; otherwise, the safe option is to say Y.
1542
1543 config COMPAT_VDSO
1544 bool "Enable vDSO for 32-bit applications"
1545 depends on !CPU_BIG_ENDIAN
1546 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1547 select GENERIC_COMPAT_VDSO
1548 default y
1549 help
1550 Place in the process address space of 32-bit applications an
1551 ELF shared object providing fast implementations of gettimeofday
1552 and clock_gettime.
1553
1554 You must have a 32-bit build of glibc 2.22 or later for programs
1555 to seamlessly take advantage of this.
1556
1557 config THUMB2_COMPAT_VDSO
1558 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1559 depends on COMPAT_VDSO
1560 default y
1561 help
1562 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1563 otherwise with '-marm'.
1564
1565 menuconfig ARMV8_DEPRECATED
1566 bool "Emulate deprecated/obsolete ARMv8 instructions"
1567 depends on SYSCTL
1568 help
1569 Legacy software support may require certain instructions
1570 that have been deprecated or obsoleted in the architecture.
1571
1572 Enable this config to enable selective emulation of these
1573 features.
1574
1575 If unsure, say Y
1576
1577 if ARMV8_DEPRECATED
1578
1579 config SWP_EMULATION
1580 bool "Emulate SWP/SWPB instructions"
1581 help
1582 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1583 they are always undefined. Say Y here to enable software
1584 emulation of these instructions for userspace using LDXR/STXR.
1585 This feature can be controlled at runtime with the abi.swp
1586 sysctl which is disabled by default.
1587
1588 In some older versions of glibc [<=2.8] SWP is used during futex
1589 trylock() operations with the assumption that the code will not
1590 be preempted. This invalid assumption may be more likely to fail
1591 with SWP emulation enabled, leading to deadlock of the user
1592 application.
1593
1594 NOTE: when accessing uncached shared regions, LDXR/STXR rely
1595 on an external transaction monitoring block called a global
1596 monitor to maintain update atomicity. If your system does not
1597 implement a global monitor, this option can cause programs that
1598 perform SWP operations to uncached memory to deadlock.
1599
1600 If unsure, say Y
1601
1602 config CP15_BARRIER_EMULATION
1603 bool "Emulate CP15 Barrier instructions"
1604 help
1605 The CP15 barrier instructions - CP15ISB, CP15DSB, and
1606 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1607 strongly recommended to use the ISB, DSB, and DMB
1608 instructions instead.
1609
1610 Say Y here to enable software emulation of these
1611 instructions for AArch32 userspace code. When this option is
1612 enabled, CP15 barrier usage is traced which can help
1613 identify software that needs updating. This feature can be
1614 controlled at runtime with the abi.cp15_barrier sysctl.
1615
1616 If unsure, say Y
1617
1618 config SETEND_EMULATION
1619 bool "Emulate SETEND instruction"
1620 help
1621 The SETEND instruction alters the data-endianness of the
1622 AArch32 EL0, and is deprecated in ARMv8.
1623
1624 Say Y here to enable software emulation of the instruction
1625 for AArch32 userspace code. This feature can be controlled
1626 at runtime with the abi.setend sysctl.
1627
1628 Note: All the cpus on the system must have mixed endian support at EL0
1629 for this feature to be enabled. If a new CPU - which doesn't support mixed
1630 endian - is hotplugged in after this feature has been enabled, there could
1631 be unexpected results in the applications.
1632
1633 If unsure, say Y
1634 endif # ARMV8_DEPRECATED
1635
1636 endif # COMPAT
1637
1638 menu "ARMv8.1 architectural features"
1639
1640 config ARM64_HW_AFDBM
1641 bool "Support for hardware updates of the Access and Dirty page flags"
1642 default y
1643 help
1644 The ARMv8.1 architecture extensions introduce support for
1645 hardware updates of the access and dirty information in page
1646 table entries. When enabled in TCR_EL1 (HA and HD bits) on
1647 capable processors, accesses to pages with PTE_AF cleared will
1648 set this bit instead of raising an access flag fault.
1649 Similarly, writes to read-only pages with the DBM bit set will
1650 clear the read-only bit (AP[2]) instead of raising a
1651 permission fault.
1652
1653 Kernels built with this configuration option enabled continue
1654 to work on pre-ARMv8.1 hardware and the performance impact is
1655 minimal. If unsure, say Y.
1656
1657 config ARM64_PAN
1658 bool "Enable support for Privileged Access Never (PAN)"
1659 default y
1660 help
1661 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1662 prevents the kernel or hypervisor from accessing user-space (EL0)
1663 memory directly.
1664
1665 Choosing this option will cause any unprotected (not using
1666 copy_to_user et al) memory access to fail with a permission fault.
1667
1668 The feature is detected at runtime, and will remain as a 'nop'
1669 instruction if the cpu does not implement the feature.
1670
1671 config AS_HAS_LDAPR
1672 def_bool $(as-instr,.arch_extension rcpc)
1673
1674 config AS_HAS_LSE_ATOMICS
1675 def_bool $(as-instr,.arch_extension lse)
1676
1677 config ARM64_LSE_ATOMICS
1678 bool
1679 default ARM64_USE_LSE_ATOMICS
1680 depends on AS_HAS_LSE_ATOMICS
1681
1682 config ARM64_USE_LSE_ATOMICS
1683 bool "Atomic instructions"
1684 depends on JUMP_LABEL
1685 default y
1686 help
1687 As part of the Large System Extensions, ARMv8.1 introduces new
1688 atomic instructions that are designed specifically to scale in
1689 very large systems.
1690
1691 Say Y here to make use of these instructions for the in-kernel
1692 atomic routines. This incurs a small overhead on CPUs that do
1693 not support these instructions and requires the kernel to be
1694 built with binutils >= 2.25 in order for the new instructions
1695 to be used.
1696
1697 endmenu # "ARMv8.1 architectural features"
1698
1699 menu "ARMv8.2 architectural features"
1700
1701 config AS_HAS_ARMV8_2
1702 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1703
1704 config AS_HAS_SHA3
1705 def_bool $(as-instr,.arch armv8.2-a+sha3)
1706
1707 config ARM64_PMEM
1708 bool "Enable support for persistent memory"
1709 select ARCH_HAS_PMEM_API
1710 select ARCH_HAS_UACCESS_FLUSHCACHE
1711 help
1712 Say Y to enable support for the persistent memory API based on the
1713 ARMv8.2 DCPoP feature.
1714
1715 The feature is detected at runtime, and the kernel will use DC CVAC
1716 operations if DC CVAP is not supported (following the behaviour of
1717 DC CVAP itself if the system does not define a point of persistence).
1718
1719 config ARM64_RAS_EXTN
1720 bool "Enable support for RAS CPU Extensions"
1721 default y
1722 help
1723 CPUs that support the Reliability, Availability and Serviceability
1724 (RAS) Extensions, part of ARMv8.2 are able to track faults and
1725 errors, classify them and report them to software.
1726
1727 On CPUs with these extensions system software can use additional
1728 barriers to determine if faults are pending and read the
1729 classification from a new set of registers.
1730
1731 Selecting this feature will allow the kernel to use these barriers
1732 and access the new registers if the system supports the extension.
1733 Platform RAS features may additionally depend on firmware support.
1734
1735 config ARM64_CNP
1736 bool "Enable support for Common Not Private (CNP) translations"
1737 default y
1738 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1739 help
1740 Common Not Private (CNP) allows translation table entries to
1741 be shared between different PEs in the same inner shareable
1742 domain, so the hardware can use this fact to optimise the
1743 caching of such entries in the TLB.
1744
1745 Selecting this option allows the CNP feature to be detected
1746 at runtime, and does not affect PEs that do not implement
1747 this feature.
1748
1749 endmenu # "ARMv8.2 architectural features"
1750
1751 menu "ARMv8.3 architectural features"
1752
1753 config ARM64_PTR_AUTH
1754 bool "Enable support for pointer authentication"
1755 default y
1756 help
1757 Pointer authentication (part of the ARMv8.3 Extensions) provides
1758 instructions for signing and authenticating pointers against secret
1759 keys, which can be used to mitigate Return Oriented Programming (ROP)
1760 and other attacks.
1761
1762 This option enables these instructions at EL0 (i.e. for userspace).
1763 Choosing this option will cause the kernel to initialise secret keys
1764 for each process at exec() time, with these keys being
1765 context-switched along with the process.
1766
1767 The feature is detected at runtime. If the feature is not present in
1768 hardware it will not be advertised to userspace/KVM guest nor will it
1769 be enabled.
1770
1771 If the feature is present on the boot CPU but not on a late CPU, then
1772 the late CPU will be parked. Also, if the boot CPU does not have
1773 address auth and the late CPU has then the late CPU will still boot
1774 but with the feature disabled. On such a system, this option should
1775 not be selected.
1776
1777 config ARM64_PTR_AUTH_KERNEL
1778 bool "Use pointer authentication for kernel"
1779 default y
1780 depends on ARM64_PTR_AUTH
1781 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1782 # Modern compilers insert a .note.gnu.property section note for PAC
1783 # which is only understood by binutils starting with version 2.33.1.
1784 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1785 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1786 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1787 help
1788 If the compiler supports the -mbranch-protection or
1789 -msign-return-address flag (e.g. GCC 7 or later), then this option
1790 will cause the kernel itself to be compiled with return address
1791 protection. In this case, and if the target hardware is known to
1792 support pointer authentication, then CONFIG_STACKPROTECTOR can be
1793 disabled with minimal loss of protection.
1794
1795 This feature works with FUNCTION_GRAPH_TRACER option only if
1796 DYNAMIC_FTRACE_WITH_REGS is enabled.
1797
1798 config CC_HAS_BRANCH_PROT_PAC_RET
1799 # GCC 9 or later, clang 8 or later
1800 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1801
1802 config CC_HAS_SIGN_RETURN_ADDRESS
1803 # GCC 7, 8
1804 def_bool $(cc-option,-msign-return-address=all)
1805
1806 config AS_HAS_PAC
1807 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1808
1809 config AS_HAS_CFI_NEGATE_RA_STATE
1810 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1811
1812 endmenu # "ARMv8.3 architectural features"
1813
1814 menu "ARMv8.4 architectural features"
1815
1816 config ARM64_AMU_EXTN
1817 bool "Enable support for the Activity Monitors Unit CPU extension"
1818 default y
1819 help
1820 The activity monitors extension is an optional extension introduced
1821 by the ARMv8.4 CPU architecture. This enables support for version 1
1822 of the activity monitors architecture, AMUv1.
1823
1824 To enable the use of this extension on CPUs that implement it, say Y.
1825
1826 Note that for architectural reasons, firmware _must_ implement AMU
1827 support when running on CPUs that present the activity monitors
1828 extension. The required support is present in:
1829 * Version 1.5 and later of the ARM Trusted Firmware
1830
1831 For kernels that have this configuration enabled but boot with broken
1832 firmware, you may need to say N here until the firmware is fixed.
1833 Otherwise you may experience firmware panics or lockups when
1834 accessing the counter registers. Even if you are not observing these
1835 symptoms, the values returned by the register reads might not
1836 correctly reflect reality. Most commonly, the value read will be 0,
1837 indicating that the counter is not enabled.
1838
1839 config AS_HAS_ARMV8_4
1840 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1841
1842 config ARM64_TLB_RANGE
1843 bool "Enable support for tlbi range feature"
1844 default y
1845 depends on AS_HAS_ARMV8_4
1846 help
1847 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1848 range of input addresses.
1849
1850 The feature introduces new assembly instructions, and they were
1851 support when binutils >= 2.30.
1852
1853 endmenu # "ARMv8.4 architectural features"
1854
1855 menu "ARMv8.5 architectural features"
1856
1857 config AS_HAS_ARMV8_5
1858 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1859
1860 config ARM64_BTI
1861 bool "Branch Target Identification support"
1862 default y
1863 help
1864 Branch Target Identification (part of the ARMv8.5 Extensions)
1865 provides a mechanism to limit the set of locations to which computed
1866 branch instructions such as BR or BLR can jump.
1867
1868 To make use of BTI on CPUs that support it, say Y.
1869
1870 BTI is intended to provide complementary protection to other control
1871 flow integrity protection mechanisms, such as the Pointer
1872 authentication mechanism provided as part of the ARMv8.3 Extensions.
1873 For this reason, it does not make sense to enable this option without
1874 also enabling support for pointer authentication. Thus, when
1875 enabling this option you should also select ARM64_PTR_AUTH=y.
1876
1877 Userspace binaries must also be specifically compiled to make use of
1878 this mechanism. If you say N here or the hardware does not support
1879 BTI, such binaries can still run, but you get no additional
1880 enforcement of branch destinations.
1881
1882 config ARM64_BTI_KERNEL
1883 bool "Use Branch Target Identification for kernel"
1884 default y
1885 depends on ARM64_BTI
1886 depends on ARM64_PTR_AUTH_KERNEL
1887 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1888 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1889 depends on !CC_IS_GCC || GCC_VERSION >= 100100
1890 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
1891 depends on !CC_IS_GCC
1892 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1893 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1894 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1895 help
1896 Build the kernel with Branch Target Identification annotations
1897 and enable enforcement of this for kernel code. When this option
1898 is enabled and the system supports BTI all kernel code including
1899 modular code must have BTI enabled.
1900
1901 config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1902 # GCC 9 or later, clang 8 or later
1903 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1904
1905 config ARM64_E0PD
1906 bool "Enable support for E0PD"
1907 default y
1908 help
1909 E0PD (part of the ARMv8.5 extensions) allows us to ensure
1910 that EL0 accesses made via TTBR1 always fault in constant time,
1911 providing similar benefits to KASLR as those provided by KPTI, but
1912 with lower overhead and without disrupting legitimate access to
1913 kernel memory such as SPE.
1914
1915 This option enables E0PD for TTBR1 where available.
1916
1917 config ARM64_AS_HAS_MTE
1918 # Initial support for MTE went in binutils 2.32.0, checked with
1919 # ".arch armv8.5-a+memtag" below. However, this was incomplete
1920 # as a late addition to the final architecture spec (LDGM/STGM)
1921 # is only supported in the newer 2.32.x and 2.33 binutils
1922 # versions, hence the extra "stgm" instruction check below.
1923 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1924
1925 config ARM64_MTE
1926 bool "Memory Tagging Extension support"
1927 default y
1928 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1929 depends on AS_HAS_ARMV8_5
1930 depends on AS_HAS_LSE_ATOMICS
1931 # Required for tag checking in the uaccess routines
1932 depends on ARM64_PAN
1933 select ARCH_HAS_SUBPAGE_FAULTS
1934 select ARCH_USES_HIGH_VMA_FLAGS
1935 help
1936 Memory Tagging (part of the ARMv8.5 Extensions) provides
1937 architectural support for run-time, always-on detection of
1938 various classes of memory error to aid with software debugging
1939 to eliminate vulnerabilities arising from memory-unsafe
1940 languages.
1941
1942 This option enables the support for the Memory Tagging
1943 Extension at EL0 (i.e. for userspace).
1944
1945 Selecting this option allows the feature to be detected at
1946 runtime. Any secondary CPU not implementing this feature will
1947 not be allowed a late bring-up.
1948
1949 Userspace binaries that want to use this feature must
1950 explicitly opt in. The mechanism for the userspace is
1951 described in:
1952
1953 Documentation/arm64/memory-tagging-extension.rst.
1954
1955 endmenu # "ARMv8.5 architectural features"
1956
1957 menu "ARMv8.7 architectural features"
1958
1959 config ARM64_EPAN
1960 bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1961 default y
1962 depends on ARM64_PAN
1963 help
1964 Enhanced Privileged Access Never (EPAN) allows Privileged
1965 Access Never to be used with Execute-only mappings.
1966
1967 The feature is detected at runtime, and will remain disabled
1968 if the cpu does not implement the feature.
1969 endmenu # "ARMv8.7 architectural features"
1970
1971 config ARM64_SVE
1972 bool "ARM Scalable Vector Extension support"
1973 default y
1974 help
1975 The Scalable Vector Extension (SVE) is an extension to the AArch64
1976 execution state which complements and extends the SIMD functionality
1977 of the base architecture to support much larger vectors and to enable
1978 additional vectorisation opportunities.
1979
1980 To enable use of this extension on CPUs that implement it, say Y.
1981
1982 On CPUs that support the SVE2 extensions, this option will enable
1983 those too.
1984
1985 Note that for architectural reasons, firmware _must_ implement SVE
1986 support when running on SVE capable hardware. The required support
1987 is present in:
1988
1989 * version 1.5 and later of the ARM Trusted Firmware
1990 * the AArch64 boot wrapper since commit 5e1261e08abf
1991 ("bootwrapper: SVE: Enable SVE for EL2 and below").
1992
1993 For other firmware implementations, consult the firmware documentation
1994 or vendor.
1995
1996 If you need the kernel to boot on SVE-capable hardware with broken
1997 firmware, you may need to say N here until you get your firmware
1998 fixed. Otherwise, you may experience firmware panics or lockups when
1999 booting the kernel. If unsure and you are not observing these
2000 symptoms, you should assume that it is safe to say Y.
2001
2002 config ARM64_SME
2003 bool "ARM Scalable Matrix Extension support"
2004 default y
2005 depends on ARM64_SVE
2006 help
2007 The Scalable Matrix Extension (SME) is an extension to the AArch64
2008 execution state which utilises a substantial subset of the SVE
2009 instruction set, together with the addition of new architectural
2010 register state capable of holding two dimensional matrix tiles to
2011 enable various matrix operations.
2012
2013 config ARM64_MODULE_PLTS
2014 bool "Use PLTs to allow module memory to spill over into vmalloc area"
2015 depends on MODULES
2016 select HAVE_MOD_ARCH_SPECIFIC
2017 help
2018 Allocate PLTs when loading modules so that jumps and calls whose
2019 targets are too far away for their relative offsets to be encoded
2020 in the instructions themselves can be bounced via veneers in the
2021 module's PLT. This allows modules to be allocated in the generic
2022 vmalloc area after the dedicated module memory area has been
2023 exhausted.
2024
2025 When running with address space randomization (KASLR), the module
2026 region itself may be too far away for ordinary relative jumps and
2027 calls, and so in that case, module PLTs are required and cannot be
2028 disabled.
2029
2030 Specific errata workaround(s) might also force module PLTs to be
2031 enabled (ARM64_ERRATUM_843419).
2032
2033 config ARM64_PSEUDO_NMI
2034 bool "Support for NMI-like interrupts"
2035 select ARM_GIC_V3
2036 help
2037 Adds support for mimicking Non-Maskable Interrupts through the use of
2038 GIC interrupt priority. This support requires version 3 or later of
2039 ARM GIC.
2040
2041 This high priority configuration for interrupts needs to be
2042 explicitly enabled by setting the kernel parameter
2043 "irqchip.gicv3_pseudo_nmi" to 1.
2044
2045 If unsure, say N
2046
2047 if ARM64_PSEUDO_NMI
2048 config ARM64_DEBUG_PRIORITY_MASKING
2049 bool "Debug interrupt priority masking"
2050 help
2051 This adds runtime checks to functions enabling/disabling
2052 interrupts when using priority masking. The additional checks verify
2053 the validity of ICC_PMR_EL1 when calling concerned functions.
2054
2055 If unsure, say N
2056 endif # ARM64_PSEUDO_NMI
2057
2058 config RELOCATABLE
2059 bool "Build a relocatable kernel image" if EXPERT
2060 select ARCH_HAS_RELR
2061 default y
2062 help
2063 This builds the kernel as a Position Independent Executable (PIE),
2064 which retains all relocation metadata required to relocate the
2065 kernel binary at runtime to a different virtual address than the
2066 address it was linked at.
2067 Since AArch64 uses the RELA relocation format, this requires a
2068 relocation pass at runtime even if the kernel is loaded at the
2069 same address it was linked at.
2070
2071 config RANDOMIZE_BASE
2072 bool "Randomize the address of the kernel image"
2073 select ARM64_MODULE_PLTS if MODULES
2074 select RELOCATABLE
2075 help
2076 Randomizes the virtual address at which the kernel image is
2077 loaded, as a security feature that deters exploit attempts
2078 relying on knowledge of the location of kernel internals.
2079
2080 It is the bootloader's job to provide entropy, by passing a
2081 random u64 value in /chosen/kaslr-seed at kernel entry.
2082
2083 When booting via the UEFI stub, it will invoke the firmware's
2084 EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2085 to the kernel proper. In addition, it will randomise the physical
2086 location of the kernel Image as well.
2087
2088 If unsure, say N.
2089
2090 config RANDOMIZE_MODULE_REGION_FULL
2091 bool "Randomize the module region over a 2 GB range"
2092 depends on RANDOMIZE_BASE
2093 default y
2094 help
2095 Randomizes the location of the module region inside a 2 GB window
2096 covering the core kernel. This way, it is less likely for modules
2097 to leak information about the location of core kernel data structures
2098 but it does imply that function calls between modules and the core
2099 kernel will need to be resolved via veneers in the module PLT.
2100
2101 When this option is not set, the module region will be randomized over
2102 a limited range that contains the [_stext, _etext] interval of the
2103 core kernel, so branch relocations are almost always in range unless
2104 ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2105 particular case of region exhaustion, modules might be able to fall
2106 back to a larger 2GB area.
2107
2108 config CC_HAVE_STACKPROTECTOR_SYSREG
2109 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2110
2111 config STACKPROTECTOR_PER_TASK
2112 def_bool y
2113 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2114
2115 # The GPIO number here must be sorted by descending number. In case of
2116 # a multiplatform kernel, we just want the highest value required by the
2117 # selected platforms.
2118 config ARCH_NR_GPIO
2119 int
2120 default 2048 if ARCH_APPLE
2121 default 0
2122 help
2123 Maximum number of GPIOs in the system.
2124
2125 If unsure, leave the default value.
2126
2127 endmenu # "Kernel Features"
2128
2129 menu "Boot options"
2130
2131 config ARM64_ACPI_PARKING_PROTOCOL
2132 bool "Enable support for the ARM64 ACPI parking protocol"
2133 depends on ACPI
2134 help
2135 Enable support for the ARM64 ACPI parking protocol. If disabled
2136 the kernel will not allow booting through the ARM64 ACPI parking
2137 protocol even if the corresponding data is present in the ACPI
2138 MADT table.
2139
2140 config CMDLINE
2141 string "Default kernel command string"
2142 default ""
2143 help
2144 Provide a set of default command-line options at build time by
2145 entering them here. As a minimum, you should specify the the
2146 root device (e.g. root=/dev/nfs).
2147
2148 choice
2149 prompt "Kernel command line type" if CMDLINE != ""
2150 default CMDLINE_FROM_BOOTLOADER
2151 help
2152 Choose how the kernel will handle the provided default kernel
2153 command line string.
2154
2155 config CMDLINE_FROM_BOOTLOADER
2156 bool "Use bootloader kernel arguments if available"
2157 help
2158 Uses the command-line options passed by the boot loader. If
2159 the boot loader doesn't provide any, the default kernel command
2160 string provided in CMDLINE will be used.
2161
2162 config CMDLINE_FORCE
2163 bool "Always use the default kernel command string"
2164 help
2165 Always use the default kernel command string, even if the boot
2166 loader passes other arguments to the kernel.
2167 This is useful if you cannot or don't want to change the
2168 command-line options your boot loader passes to the kernel.
2169
2170 endchoice
2171
2172 config EFI_STUB
2173 bool
2174
2175 config EFI
2176 bool "UEFI runtime support"
2177 depends on OF && !CPU_BIG_ENDIAN
2178 depends on KERNEL_MODE_NEON
2179 select ARCH_SUPPORTS_ACPI
2180 select LIBFDT
2181 select UCS2_STRING
2182 select EFI_PARAMS_FROM_FDT
2183 select EFI_RUNTIME_WRAPPERS
2184 select EFI_STUB
2185 select EFI_GENERIC_STUB
2186 imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2187 default y
2188 help
2189 This option provides support for runtime services provided
2190 by UEFI firmware (such as non-volatile variables, realtime
2191 clock, and platform reset). A UEFI stub is also provided to
2192 allow the kernel to be booted as an EFI application. This
2193 is only useful on systems that have UEFI firmware.
2194
2195 config DMI
2196 bool "Enable support for SMBIOS (DMI) tables"
2197 depends on EFI
2198 default y
2199 help
2200 This enables SMBIOS/DMI feature for systems.
2201
2202 This option is only useful on systems that have UEFI firmware.
2203 However, even with this option, the resultant kernel should
2204 continue to boot on existing non-UEFI platforms.
2205
2206 endmenu # "Boot options"
2207
2208 menu "Power management options"
2209
2210 source "kernel/power/Kconfig"
2211
2212 config ARCH_HIBERNATION_POSSIBLE
2213 def_bool y
2214 depends on CPU_PM
2215
2216 config ARCH_HIBERNATION_HEADER
2217 def_bool y
2218 depends on HIBERNATION
2219
2220 config ARCH_SUSPEND_POSSIBLE
2221 def_bool y
2222
2223 endmenu # "Power management options"
2224
2225 menu "CPU Power Management"
2226
2227 source "drivers/cpuidle/Kconfig"
2228
2229 source "drivers/cpufreq/Kconfig"
2230
2231 endmenu # "CPU Power Management"
2232
2233 source "drivers/acpi/Kconfig"
2234
2235 source "arch/arm64/kvm/Kconfig"
2236
2237 if CRYPTO
2238 source "arch/arm64/crypto/Kconfig"
2239 endif # CRYPTO