Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * arch/arm/kernel/kprobes-test.c
0004  *
0005  * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
0006  */
0007 
0008 /*
0009  * This file contains test code for ARM kprobes.
0010  *
0011  * The top level function run_all_tests() executes tests for all of the
0012  * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
0013  * fall into two categories; run_api_tests() checks basic functionality of the
0014  * kprobes API, and run_test_cases() is a comprehensive test for kprobes
0015  * instruction decoding and simulation.
0016  *
0017  * run_test_cases() first checks the kprobes decoding table for self consistency
0018  * (using table_test()) then executes a series of test cases for each of the CPU
0019  * instruction forms. coverage_start() and coverage_end() are used to verify
0020  * that these test cases cover all of the possible combinations of instructions
0021  * described by the kprobes decoding tables.
0022  *
0023  * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
0024  * which use the macros defined in kprobes-test.h. The rest of this
0025  * documentation will describe the operation of the framework used by these
0026  * test cases.
0027  */
0028 
0029 /*
0030  * TESTING METHODOLOGY
0031  * -------------------
0032  *
0033  * The methodology used to test an ARM instruction 'test_insn' is to use
0034  * inline assembler like:
0035  *
0036  * test_before: nop
0037  * test_case:   test_insn
0038  * test_after:  nop
0039  *
0040  * When the test case is run a kprobe is placed of each nop. The
0041  * post-handler of the test_before probe is used to modify the saved CPU
0042  * register context to that which we require for the test case. The
0043  * pre-handler of the of the test_after probe saves a copy of the CPU
0044  * register context. In this way we can execute test_insn with a specific
0045  * register context and see the results afterwards.
0046  *
0047  * To actually test the kprobes instruction emulation we perform the above
0048  * step a second time but with an additional kprobe on the test_case
0049  * instruction itself. If the emulation is accurate then the results seen
0050  * by the test_after probe will be identical to the first run which didn't
0051  * have a probe on test_case.
0052  *
0053  * Each test case is run several times with a variety of variations in the
0054  * flags value of stored in CPSR, and for Thumb code, different ITState.
0055  *
0056  * For instructions which can modify PC, a second test_after probe is used
0057  * like this:
0058  *
0059  * test_before: nop
0060  * test_case:   test_insn
0061  * test_after:  nop
0062  *      b test_done
0063  * test_after2: nop
0064  * test_done:
0065  *
0066  * The test case is constructed such that test_insn branches to
0067  * test_after2, or, if testing a conditional instruction, it may just
0068  * continue to test_after. The probes inserted at both locations let us
0069  * determine which happened. A similar approach is used for testing
0070  * backwards branches...
0071  *
0072  *      b test_before
0073  *      b test_done  @ helps to cope with off by 1 branches
0074  * test_after2: nop
0075  *      b test_done
0076  * test_before: nop
0077  * test_case:   test_insn
0078  * test_after:  nop
0079  * test_done:
0080  *
0081  * The macros used to generate the assembler instructions describe above
0082  * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
0083  * (branch backwards). In these, the local variables numbered 1, 50, 2 and
0084  * 99 represent: test_before, test_case, test_after2 and test_done.
0085  *
0086  * FRAMEWORK
0087  * ---------
0088  *
0089  * Each test case is wrapped between the pair of macros TESTCASE_START and
0090  * TESTCASE_END. As well as performing the inline assembler boilerplate,
0091  * these call out to the kprobes_test_case_start() and
0092  * kprobes_test_case_end() functions which drive the execution of the test
0093  * case. The specific arguments to use for each test case are stored as
0094  * inline data constructed using the various TEST_ARG_* macros. Putting
0095  * this all together, a simple test case may look like:
0096  *
0097  *  TESTCASE_START("Testing mov r0, r7")
0098  *  TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
0099  *  TEST_ARG_END("")
0100  *  TEST_INSTRUCTION("mov r0, r7")
0101  *  TESTCASE_END
0102  *
0103  * Note, in practice the single convenience macro TEST_R would be used for this
0104  * instead.
0105  *
0106  * The above would expand to assembler looking something like:
0107  *
0108  *  @ TESTCASE_START
0109  *  bl  __kprobes_test_case_start
0110  *  .pushsection .rodata
0111  *  "10:
0112  *  .ascii "mov r0, r7" @ text title for test case
0113  *  .byte   0
0114  *  .popsection
0115  *  @ start of inline data...
0116  *  .word   10b     @ pointer to title in .rodata section
0117  *
0118  *  @ TEST_ARG_REG
0119  *  .byte   ARG_TYPE_REG
0120  *  .byte   7
0121  *  .short  0
0122  *  .word   0x1234567
0123  *
0124  *  @ TEST_ARG_END
0125  *  .byte   ARG_TYPE_END
0126  *  .byte   TEST_ISA    @ flags, including ISA being tested
0127  *  .short  50f-0f      @ offset of 'test_before'
0128  *  .short  2f-0f       @ offset of 'test_after2' (if relevent)
0129  *  .short  99f-0f      @ offset of 'test_done'
0130  *  @ start of test case code...
0131  *  0:
0132  *  .code   TEST_ISA    @ switch to ISA being tested
0133  *
0134  *  @ TEST_INSTRUCTION
0135  *  50: nop     @ location for 'test_before' probe
0136  *  1:  mov r0, r7  @ the test case instruction 'test_insn'
0137  *      nop     @ location for 'test_after' probe
0138  *
0139  *  // TESTCASE_END
0140  *  2:
0141  *  99: bl __kprobes_test_case_end_##TEST_ISA
0142  *  .code   NONMAL_ISA
0143  *
0144  * When the above is execute the following happens...
0145  *
0146  * __kprobes_test_case_start() is an assembler wrapper which sets up space
0147  * for a stack buffer and calls the C function kprobes_test_case_start().
0148  * This C function will do some initial processing of the inline data and
0149  * setup some global state. It then inserts the test_before and test_after
0150  * kprobes and returns a value which causes the assembler wrapper to jump
0151  * to the start of the test case code, (local label '0').
0152  *
0153  * When the test case code executes, the test_before probe will be hit and
0154  * test_before_post_handler will call setup_test_context(). This fills the
0155  * stack buffer and CPU registers with a test pattern and then processes
0156  * the test case arguments. In our example there is one TEST_ARG_REG which
0157  * indicates that R7 should be loaded with the value 0x12345678.
0158  *
0159  * When the test_before probe ends, the test case continues and executes
0160  * the "mov r0, r7" instruction. It then hits the test_after probe and the
0161  * pre-handler for this (test_after_pre_handler) will save a copy of the
0162  * CPU register context. This should now have R0 holding the same value as
0163  * R7.
0164  *
0165  * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
0166  * an assembler wrapper which switches back to the ISA used by the test
0167  * code and calls the C function kprobes_test_case_end().
0168  *
0169  * For each run through the test case, test_case_run_count is incremented
0170  * by one. For even runs, kprobes_test_case_end() saves a copy of the
0171  * register and stack buffer contents from the test case just run. It then
0172  * inserts a kprobe on the test case instruction 'test_insn' and returns a
0173  * value to cause the test case code to be re-run.
0174  *
0175  * For odd numbered runs, kprobes_test_case_end() compares the register and
0176  * stack buffer contents to those that were saved on the previous even
0177  * numbered run (the one without the kprobe on test_insn). These should be
0178  * the same if the kprobe instruction simulation routine is correct.
0179  *
0180  * The pair of test case runs is repeated with different combinations of
0181  * flag values in CPSR and, for Thumb, different ITState. This is
0182  * controlled by test_context_cpsr().
0183  *
0184  * BUILDING TEST CASES
0185  * -------------------
0186  *
0187  *
0188  * As an aid to building test cases, the stack buffer is initialised with
0189  * some special values:
0190  *
0191  *   [SP+13*4]  Contains SP+120. This can be used to test instructions
0192  *      which load a value into SP.
0193  *
0194  *   [SP+15*4]  When testing branching instructions using TEST_BRANCH_{F,B},
0195  *      this holds the target address of the branch, 'test_after2'.
0196  *      This can be used to test instructions which load a PC value
0197  *      from memory.
0198  */
0199 
0200 #include <linux/kernel.h>
0201 #include <linux/module.h>
0202 #include <linux/slab.h>
0203 #include <linux/sched/clock.h>
0204 #include <linux/kprobes.h>
0205 #include <linux/errno.h>
0206 #include <linux/stddef.h>
0207 #include <linux/bug.h>
0208 #include <asm/opcodes.h>
0209 
0210 #include "core.h"
0211 #include "test-core.h"
0212 #include "../decode-arm.h"
0213 #include "../decode-thumb.h"
0214 
0215 
0216 #define BENCHMARKING    1
0217 
0218 
0219 /*
0220  * Test basic API
0221  */
0222 
0223 static bool test_regs_ok;
0224 static int test_func_instance;
0225 static int pre_handler_called;
0226 static int post_handler_called;
0227 static int kretprobe_handler_called;
0228 static int tests_failed;
0229 
0230 #define FUNC_ARG1 0x12345678
0231 #define FUNC_ARG2 0xabcdef
0232 
0233 
0234 #ifndef CONFIG_THUMB2_KERNEL
0235 
0236 #define RET(reg)    "mov    pc, "#reg
0237 
0238 long arm_func(long r0, long r1);
0239 
0240 static void __used __naked __arm_kprobes_test_func(void)
0241 {
0242     __asm__ __volatile__ (
0243         ".arm                   \n\t"
0244         ".type arm_func, %%function     \n\t"
0245         "arm_func:              \n\t"
0246         "adds   r0, r0, r1          \n\t"
0247         "mov    pc, lr              \n\t"
0248         ".code "NORMAL_ISA   /* Back to Thumb if necessary */
0249         : : : "r0", "r1", "cc"
0250     );
0251 }
0252 
0253 #else /* CONFIG_THUMB2_KERNEL */
0254 
0255 #define RET(reg)    "bx "#reg
0256 
0257 long thumb16_func(long r0, long r1);
0258 long thumb32even_func(long r0, long r1);
0259 long thumb32odd_func(long r0, long r1);
0260 
0261 static void __used __naked __thumb_kprobes_test_funcs(void)
0262 {
0263     __asm__ __volatile__ (
0264         ".type thumb16_func, %%function     \n\t"
0265         "thumb16_func:              \n\t"
0266         "adds.n r0, r0, r1          \n\t"
0267         "bx lr              \n\t"
0268 
0269         ".align                 \n\t"
0270         ".type thumb32even_func, %%function \n\t"
0271         "thumb32even_func:          \n\t"
0272         "adds.w r0, r0, r1          \n\t"
0273         "bx lr              \n\t"
0274 
0275         ".align                 \n\t"
0276         "nop.n                  \n\t"
0277         ".type thumb32odd_func, %%function  \n\t"
0278         "thumb32odd_func:           \n\t"
0279         "adds.w r0, r0, r1          \n\t"
0280         "bx lr              \n\t"
0281 
0282         : : : "r0", "r1", "cc"
0283     );
0284 }
0285 
0286 #endif /* CONFIG_THUMB2_KERNEL */
0287 
0288 
0289 static int call_test_func(long (*func)(long, long), bool check_test_regs)
0290 {
0291     long ret;
0292 
0293     ++test_func_instance;
0294     test_regs_ok = false;
0295 
0296     ret = (*func)(FUNC_ARG1, FUNC_ARG2);
0297     if (ret != FUNC_ARG1 + FUNC_ARG2) {
0298         pr_err("FAIL: call_test_func: func returned %lx\n", ret);
0299         return false;
0300     }
0301 
0302     if (check_test_regs && !test_regs_ok) {
0303         pr_err("FAIL: test regs not OK\n");
0304         return false;
0305     }
0306 
0307     return true;
0308 }
0309 
0310 static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
0311 {
0312     pre_handler_called = test_func_instance;
0313     if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
0314         test_regs_ok = true;
0315     return 0;
0316 }
0317 
0318 static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
0319                 unsigned long flags)
0320 {
0321     post_handler_called = test_func_instance;
0322     if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
0323         test_regs_ok = false;
0324 }
0325 
0326 static struct kprobe the_kprobe = {
0327     .addr       = 0,
0328     .pre_handler    = pre_handler,
0329     .post_handler   = post_handler
0330 };
0331 
0332 static int test_kprobe(long (*func)(long, long))
0333 {
0334     int ret;
0335 
0336     the_kprobe.addr = (kprobe_opcode_t *)func;
0337     ret = register_kprobe(&the_kprobe);
0338     if (ret < 0) {
0339         pr_err("FAIL: register_kprobe failed with %d\n", ret);
0340         return ret;
0341     }
0342 
0343     ret = call_test_func(func, true);
0344 
0345     unregister_kprobe(&the_kprobe);
0346     the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
0347 
0348     if (!ret)
0349         return -EINVAL;
0350     if (pre_handler_called != test_func_instance) {
0351         pr_err("FAIL: kprobe pre_handler not called\n");
0352         return -EINVAL;
0353     }
0354     if (post_handler_called != test_func_instance) {
0355         pr_err("FAIL: kprobe post_handler not called\n");
0356         return -EINVAL;
0357     }
0358     if (!call_test_func(func, false))
0359         return -EINVAL;
0360     if (pre_handler_called == test_func_instance ||
0361                 post_handler_called == test_func_instance) {
0362         pr_err("FAIL: probe called after unregistering\n");
0363         return -EINVAL;
0364     }
0365 
0366     return 0;
0367 }
0368 
0369 static int __kprobes
0370 kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
0371 {
0372     kretprobe_handler_called = test_func_instance;
0373     if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
0374         test_regs_ok = true;
0375     return 0;
0376 }
0377 
0378 static struct kretprobe the_kretprobe = {
0379     .handler    = kretprobe_handler,
0380 };
0381 
0382 static int test_kretprobe(long (*func)(long, long))
0383 {
0384     int ret;
0385 
0386     the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
0387     ret = register_kretprobe(&the_kretprobe);
0388     if (ret < 0) {
0389         pr_err("FAIL: register_kretprobe failed with %d\n", ret);
0390         return ret;
0391     }
0392 
0393     ret = call_test_func(func, true);
0394 
0395     unregister_kretprobe(&the_kretprobe);
0396     the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
0397 
0398     if (!ret)
0399         return -EINVAL;
0400     if (kretprobe_handler_called != test_func_instance) {
0401         pr_err("FAIL: kretprobe handler not called\n");
0402         return -EINVAL;
0403     }
0404     if (!call_test_func(func, false))
0405         return -EINVAL;
0406     if (kretprobe_handler_called == test_func_instance) {
0407         pr_err("FAIL: kretprobe called after unregistering\n");
0408         return -EINVAL;
0409     }
0410 
0411     return 0;
0412 }
0413 
0414 static int run_api_tests(long (*func)(long, long))
0415 {
0416     int ret;
0417 
0418     pr_info("    kprobe\n");
0419     ret = test_kprobe(func);
0420     if (ret < 0)
0421         return ret;
0422 
0423     pr_info("    kretprobe\n");
0424     ret = test_kretprobe(func);
0425     if (ret < 0)
0426         return ret;
0427 
0428     return 0;
0429 }
0430 
0431 
0432 /*
0433  * Benchmarking
0434  */
0435 
0436 #if BENCHMARKING
0437 
0438 static void __naked benchmark_nop(void)
0439 {
0440     __asm__ __volatile__ (
0441         "nop        \n\t"
0442         RET(lr)"    \n\t"
0443     );
0444 }
0445 
0446 #ifdef CONFIG_THUMB2_KERNEL
0447 #define wide ".w"
0448 #else
0449 #define wide
0450 #endif
0451 
0452 static void __naked benchmark_pushpop1(void)
0453 {
0454     __asm__ __volatile__ (
0455         "stmdb"wide"    sp!, {r3-r11,lr}  \n\t"
0456         "ldmia"wide"    sp!, {r3-r11,pc}"
0457     );
0458 }
0459 
0460 static void __naked benchmark_pushpop2(void)
0461 {
0462     __asm__ __volatile__ (
0463         "stmdb"wide"    sp!, {r0-r8,lr}  \n\t"
0464         "ldmia"wide"    sp!, {r0-r8,pc}"
0465     );
0466 }
0467 
0468 static void __naked benchmark_pushpop3(void)
0469 {
0470     __asm__ __volatile__ (
0471         "stmdb"wide"    sp!, {r4,lr}  \n\t"
0472         "ldmia"wide"    sp!, {r4,pc}"
0473     );
0474 }
0475 
0476 static void __naked benchmark_pushpop4(void)
0477 {
0478     __asm__ __volatile__ (
0479         "stmdb"wide"    sp!, {r0,lr}  \n\t"
0480         "ldmia"wide"    sp!, {r0,pc}"
0481     );
0482 }
0483 
0484 
0485 #ifdef CONFIG_THUMB2_KERNEL
0486 
0487 static void __naked benchmark_pushpop_thumb(void)
0488 {
0489     __asm__ __volatile__ (
0490         "push.n {r0-r7,lr}  \n\t"
0491         "pop.n  {r0-r7,pc}"
0492     );
0493 }
0494 
0495 #endif
0496 
0497 static int __kprobes
0498 benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
0499 {
0500     return 0;
0501 }
0502 
0503 static int benchmark(void(*fn)(void))
0504 {
0505     unsigned n, i, t, t0;
0506 
0507     for (n = 1000; ; n *= 2) {
0508         t0 = sched_clock();
0509         for (i = n; i > 0; --i)
0510             fn();
0511         t = sched_clock() - t0;
0512         if (t >= 250000000)
0513             break; /* Stop once we took more than 0.25 seconds */
0514     }
0515     return t / n; /* Time for one iteration in nanoseconds */
0516 };
0517 
0518 static int kprobe_benchmark(void(*fn)(void), unsigned offset)
0519 {
0520     struct kprobe k = {
0521         .addr       = (kprobe_opcode_t *)((uintptr_t)fn + offset),
0522         .pre_handler    = benchmark_pre_handler,
0523     };
0524 
0525     int ret = register_kprobe(&k);
0526     if (ret < 0) {
0527         pr_err("FAIL: register_kprobe failed with %d\n", ret);
0528         return ret;
0529     }
0530 
0531     ret = benchmark(fn);
0532 
0533     unregister_kprobe(&k);
0534     return ret;
0535 };
0536 
0537 struct benchmarks {
0538     void        (*fn)(void);
0539     unsigned    offset;
0540     const char  *title;
0541 };
0542 
0543 static int run_benchmarks(void)
0544 {
0545     int ret;
0546     struct benchmarks list[] = {
0547         {&benchmark_nop, 0, "nop"},
0548         /*
0549          * benchmark_pushpop{1,3} will have the optimised
0550          * instruction emulation, whilst benchmark_pushpop{2,4} will
0551          * be the equivalent unoptimised instructions.
0552          */
0553         {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
0554         {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
0555         {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
0556         {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
0557         {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
0558         {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
0559         {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
0560         {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
0561 #ifdef CONFIG_THUMB2_KERNEL
0562         {&benchmark_pushpop_thumb, 0, "push.n   {r0-r7,lr}"},
0563         {&benchmark_pushpop_thumb, 2, "pop.n    {r0-r7,pc}"},
0564 #endif
0565         {0}
0566     };
0567 
0568     struct benchmarks *b;
0569     for (b = list; b->fn; ++b) {
0570         ret = kprobe_benchmark(b->fn, b->offset);
0571         if (ret < 0)
0572             return ret;
0573         pr_info("    %dns for kprobe %s\n", ret, b->title);
0574     }
0575 
0576     pr_info("\n");
0577     return 0;
0578 }
0579 
0580 #endif /* BENCHMARKING */
0581 
0582 
0583 /*
0584  * Decoding table self-consistency tests
0585  */
0586 
0587 static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
0588     [DECODE_TYPE_TABLE] = sizeof(struct decode_table),
0589     [DECODE_TYPE_CUSTOM]    = sizeof(struct decode_custom),
0590     [DECODE_TYPE_SIMULATE]  = sizeof(struct decode_simulate),
0591     [DECODE_TYPE_EMULATE]   = sizeof(struct decode_emulate),
0592     [DECODE_TYPE_OR]    = sizeof(struct decode_or),
0593     [DECODE_TYPE_REJECT]    = sizeof(struct decode_reject)
0594 };
0595 
0596 static int table_iter(const union decode_item *table,
0597             int (*fn)(const struct decode_header *, void *),
0598             void *args)
0599 {
0600     const struct decode_header *h = (struct decode_header *)table;
0601     int result;
0602 
0603     for (;;) {
0604         enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
0605 
0606         if (type == DECODE_TYPE_END)
0607             return 0;
0608 
0609         result = fn(h, args);
0610         if (result)
0611             return result;
0612 
0613         h = (struct decode_header *)
0614             ((uintptr_t)h + decode_struct_sizes[type]);
0615 
0616     }
0617 }
0618 
0619 static int table_test_fail(const struct decode_header *h, const char* message)
0620 {
0621 
0622     pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
0623                     message, h->mask.bits, h->value.bits);
0624     return -EINVAL;
0625 }
0626 
0627 struct table_test_args {
0628     const union decode_item *root_table;
0629     u32         parent_mask;
0630     u32         parent_value;
0631 };
0632 
0633 static int table_test_fn(const struct decode_header *h, void *args)
0634 {
0635     struct table_test_args *a = (struct table_test_args *)args;
0636     enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
0637 
0638     if (h->value.bits & ~h->mask.bits)
0639         return table_test_fail(h, "Match value has bits not in mask");
0640 
0641     if ((h->mask.bits & a->parent_mask) != a->parent_mask)
0642         return table_test_fail(h, "Mask has bits not in parent mask");
0643 
0644     if ((h->value.bits ^ a->parent_value) & a->parent_mask)
0645         return table_test_fail(h, "Value is inconsistent with parent");
0646 
0647     if (type == DECODE_TYPE_TABLE) {
0648         struct decode_table *d = (struct decode_table *)h;
0649         struct table_test_args args2 = *a;
0650         args2.parent_mask = h->mask.bits;
0651         args2.parent_value = h->value.bits;
0652         return table_iter(d->table.table, table_test_fn, &args2);
0653     }
0654 
0655     return 0;
0656 }
0657 
0658 static int table_test(const union decode_item *table)
0659 {
0660     struct table_test_args args = {
0661         .root_table = table,
0662         .parent_mask    = 0,
0663         .parent_value   = 0
0664     };
0665     return table_iter(args.root_table, table_test_fn, &args);
0666 }
0667 
0668 
0669 /*
0670  * Decoding table test coverage analysis
0671  *
0672  * coverage_start() builds a coverage_table which contains a list of
0673  * coverage_entry's to match each entry in the specified kprobes instruction
0674  * decoding table.
0675  *
0676  * When test cases are run, coverage_add() is called to process each case.
0677  * This looks up the corresponding entry in the coverage_table and sets it as
0678  * being matched, as well as clearing the regs flag appropriate for the test.
0679  *
0680  * After all test cases have been run, coverage_end() is called to check that
0681  * all entries in coverage_table have been matched and that all regs flags are
0682  * cleared. I.e. that all possible combinations of instructions described by
0683  * the kprobes decoding tables have had a test case executed for them.
0684  */
0685 
0686 bool coverage_fail;
0687 
0688 #define MAX_COVERAGE_ENTRIES 256
0689 
0690 struct coverage_entry {
0691     const struct decode_header  *header;
0692     unsigned            regs;
0693     unsigned            nesting;
0694     char                matched;
0695 };
0696 
0697 struct coverage_table {
0698     struct coverage_entry   *base;
0699     unsigned        num_entries;
0700     unsigned        nesting;
0701 };
0702 
0703 struct coverage_table coverage;
0704 
0705 #define COVERAGE_ANY_REG    (1<<0)
0706 #define COVERAGE_SP     (1<<1)
0707 #define COVERAGE_PC     (1<<2)
0708 #define COVERAGE_PCWB       (1<<3)
0709 
0710 static const char coverage_register_lookup[16] = {
0711     [REG_TYPE_ANY]      = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
0712     [REG_TYPE_SAMEAS16] = COVERAGE_ANY_REG,
0713     [REG_TYPE_SP]       = COVERAGE_SP,
0714     [REG_TYPE_PC]       = COVERAGE_PC,
0715     [REG_TYPE_NOSP]     = COVERAGE_ANY_REG | COVERAGE_SP,
0716     [REG_TYPE_NOSPPC]   = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
0717     [REG_TYPE_NOPC]     = COVERAGE_ANY_REG | COVERAGE_PC,
0718     [REG_TYPE_NOPCWB]   = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
0719     [REG_TYPE_NOPCX]    = COVERAGE_ANY_REG,
0720     [REG_TYPE_NOSPPCX]  = COVERAGE_ANY_REG | COVERAGE_SP,
0721 };
0722 
0723 unsigned coverage_start_registers(const struct decode_header *h)
0724 {
0725     unsigned regs = 0;
0726     int i;
0727     for (i = 0; i < 20; i += 4) {
0728         int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
0729         regs |= coverage_register_lookup[r] << i;
0730     }
0731     return regs;
0732 }
0733 
0734 static int coverage_start_fn(const struct decode_header *h, void *args)
0735 {
0736     struct coverage_table *coverage = (struct coverage_table *)args;
0737     enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
0738     struct coverage_entry *entry = coverage->base + coverage->num_entries;
0739 
0740     if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
0741         pr_err("FAIL: Out of space for test coverage data");
0742         return -ENOMEM;
0743     }
0744 
0745     ++coverage->num_entries;
0746 
0747     entry->header = h;
0748     entry->regs = coverage_start_registers(h);
0749     entry->nesting = coverage->nesting;
0750     entry->matched = false;
0751 
0752     if (type == DECODE_TYPE_TABLE) {
0753         struct decode_table *d = (struct decode_table *)h;
0754         int ret;
0755         ++coverage->nesting;
0756         ret = table_iter(d->table.table, coverage_start_fn, coverage);
0757         --coverage->nesting;
0758         return ret;
0759     }
0760 
0761     return 0;
0762 }
0763 
0764 static int coverage_start(const union decode_item *table)
0765 {
0766     coverage.base = kmalloc_array(MAX_COVERAGE_ENTRIES,
0767                       sizeof(struct coverage_entry),
0768                       GFP_KERNEL);
0769     coverage.num_entries = 0;
0770     coverage.nesting = 0;
0771     return table_iter(table, coverage_start_fn, &coverage);
0772 }
0773 
0774 static void
0775 coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
0776 {
0777     int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
0778     int i;
0779     for (i = 0; i < 20; i += 4) {
0780         enum decode_reg_type reg_type = (regs >> i) & 0xf;
0781         int reg = (insn >> i) & 0xf;
0782         int flag;
0783 
0784         if (!reg_type)
0785             continue;
0786 
0787         if (reg == 13)
0788             flag = COVERAGE_SP;
0789         else if (reg == 15)
0790             flag = COVERAGE_PC;
0791         else
0792             flag = COVERAGE_ANY_REG;
0793         entry->regs &= ~(flag << i);
0794 
0795         switch (reg_type) {
0796 
0797         case REG_TYPE_NONE:
0798         case REG_TYPE_ANY:
0799         case REG_TYPE_SAMEAS16:
0800             break;
0801 
0802         case REG_TYPE_SP:
0803             if (reg != 13)
0804                 return;
0805             break;
0806 
0807         case REG_TYPE_PC:
0808             if (reg != 15)
0809                 return;
0810             break;
0811 
0812         case REG_TYPE_NOSP:
0813             if (reg == 13)
0814                 return;
0815             break;
0816 
0817         case REG_TYPE_NOSPPC:
0818         case REG_TYPE_NOSPPCX:
0819             if (reg == 13 || reg == 15)
0820                 return;
0821             break;
0822 
0823         case REG_TYPE_NOPCWB:
0824             if (!is_writeback(insn))
0825                 break;
0826             if (reg == 15) {
0827                 entry->regs &= ~(COVERAGE_PCWB << i);
0828                 return;
0829             }
0830             break;
0831 
0832         case REG_TYPE_NOPC:
0833         case REG_TYPE_NOPCX:
0834             if (reg == 15)
0835                 return;
0836             break;
0837         }
0838 
0839     }
0840 }
0841 
0842 static void coverage_add(kprobe_opcode_t insn)
0843 {
0844     struct coverage_entry *entry = coverage.base;
0845     struct coverage_entry *end = coverage.base + coverage.num_entries;
0846     bool matched = false;
0847     unsigned nesting = 0;
0848 
0849     for (; entry < end; ++entry) {
0850         const struct decode_header *h = entry->header;
0851         enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
0852 
0853         if (entry->nesting > nesting)
0854             continue; /* Skip sub-table we didn't match */
0855 
0856         if (entry->nesting < nesting)
0857             break; /* End of sub-table we were scanning */
0858 
0859         if (!matched) {
0860             if ((insn & h->mask.bits) != h->value.bits)
0861                 continue;
0862             entry->matched = true;
0863         }
0864 
0865         switch (type) {
0866 
0867         case DECODE_TYPE_TABLE:
0868             ++nesting;
0869             break;
0870 
0871         case DECODE_TYPE_CUSTOM:
0872         case DECODE_TYPE_SIMULATE:
0873         case DECODE_TYPE_EMULATE:
0874             coverage_add_registers(entry, insn);
0875             return;
0876 
0877         case DECODE_TYPE_OR:
0878             matched = true;
0879             break;
0880 
0881         case DECODE_TYPE_REJECT:
0882         default:
0883             return;
0884         }
0885 
0886     }
0887 }
0888 
0889 static void coverage_end(void)
0890 {
0891     struct coverage_entry *entry = coverage.base;
0892     struct coverage_entry *end = coverage.base + coverage.num_entries;
0893 
0894     for (; entry < end; ++entry) {
0895         u32 mask = entry->header->mask.bits;
0896         u32 value = entry->header->value.bits;
0897 
0898         if (entry->regs) {
0899             pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
0900                 mask, value, entry->regs);
0901             coverage_fail = true;
0902         }
0903         if (!entry->matched) {
0904             pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
0905                 mask, value);
0906             coverage_fail = true;
0907         }
0908     }
0909 
0910     kfree(coverage.base);
0911 }
0912 
0913 
0914 /*
0915  * Framework for instruction set test cases
0916  */
0917 
0918 void __naked __kprobes_test_case_start(void)
0919 {
0920     __asm__ __volatile__ (
0921         "mov    r2, sp                  \n\t"
0922         "bic    r3, r2, #7              \n\t"
0923         "mov    sp, r3                  \n\t"
0924         "stmdb  sp!, {r2-r11}               \n\t"
0925         "sub    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
0926         "bic    r0, lr, #1  @ r0 = inline data      \n\t"
0927         "mov    r1, sp                  \n\t"
0928         "bl kprobes_test_case_start         \n\t"
0929         RET(r0)"                    \n\t"
0930     );
0931 }
0932 
0933 #ifndef CONFIG_THUMB2_KERNEL
0934 
0935 void __naked __kprobes_test_case_end_32(void)
0936 {
0937     __asm__ __volatile__ (
0938         "mov    r4, lr                  \n\t"
0939         "bl kprobes_test_case_end           \n\t"
0940         "cmp    r0, #0                  \n\t"
0941         "movne  pc, r0                  \n\t"
0942         "mov    r0, r4                  \n\t"
0943         "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
0944         "ldmia  sp!, {r2-r11}               \n\t"
0945         "mov    sp, r2                  \n\t"
0946         "mov    pc, r0                  \n\t"
0947     );
0948 }
0949 
0950 #else /* CONFIG_THUMB2_KERNEL */
0951 
0952 void __naked __kprobes_test_case_end_16(void)
0953 {
0954     __asm__ __volatile__ (
0955         "mov    r4, lr                  \n\t"
0956         "bl kprobes_test_case_end           \n\t"
0957         "cmp    r0, #0                  \n\t"
0958         "bxne   r0                  \n\t"
0959         "mov    r0, r4                  \n\t"
0960         "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
0961         "ldmia  sp!, {r2-r11}               \n\t"
0962         "mov    sp, r2                  \n\t"
0963         "bx r0                  \n\t"
0964     );
0965 }
0966 
0967 void __naked __kprobes_test_case_end_32(void)
0968 {
0969     __asm__ __volatile__ (
0970         ".arm                       \n\t"
0971         "orr    lr, lr, #1  @ will return to Thumb code \n\t"
0972         "ldr    pc, 1f                  \n\t"
0973         "1:                     \n\t"
0974         ".word  __kprobes_test_case_end_16      \n\t"
0975     );
0976 }
0977 
0978 #endif
0979 
0980 
0981 int kprobe_test_flags;
0982 int kprobe_test_cc_position;
0983 
0984 static int test_try_count;
0985 static int test_pass_count;
0986 static int test_fail_count;
0987 
0988 static struct pt_regs initial_regs;
0989 static struct pt_regs expected_regs;
0990 static struct pt_regs result_regs;
0991 
0992 static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
0993 
0994 static const char *current_title;
0995 static struct test_arg *current_args;
0996 static u32 *current_stack;
0997 static uintptr_t current_branch_target;
0998 
0999 static uintptr_t current_code_start;
1000 static kprobe_opcode_t current_instruction;
1001 
1002 
1003 #define TEST_CASE_PASSED -1
1004 #define TEST_CASE_FAILED -2
1005 
1006 static int test_case_run_count;
1007 static bool test_case_is_thumb;
1008 static int test_instance;
1009 
1010 static unsigned long test_check_cc(int cc, unsigned long cpsr)
1011 {
1012     int ret = arm_check_condition(cc << 28, cpsr);
1013 
1014     return (ret != ARM_OPCODE_CONDTEST_FAIL);
1015 }
1016 
1017 static int is_last_scenario;
1018 static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1019 static int memory_needs_checking;
1020 
1021 static unsigned long test_context_cpsr(int scenario)
1022 {
1023     unsigned long cpsr;
1024 
1025     probe_should_run = 1;
1026 
1027     /* Default case is that we cycle through 16 combinations of flags */
1028     cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1029     cpsr |= (scenario & 0xf) << 16; /* GE flags */
1030     cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1031 
1032     if (!test_case_is_thumb) {
1033         /* Testing ARM code */
1034         int cc = current_instruction >> 28;
1035 
1036         probe_should_run = test_check_cc(cc, cpsr) != 0;
1037         if (scenario == 15)
1038             is_last_scenario = true;
1039 
1040     } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1041         /* Testing Thumb code without setting ITSTATE */
1042         if (kprobe_test_cc_position) {
1043             int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1044             probe_should_run = test_check_cc(cc, cpsr) != 0;
1045         }
1046 
1047         if (scenario == 15)
1048             is_last_scenario = true;
1049 
1050     } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1051         /* Testing Thumb code with all combinations of ITSTATE */
1052         unsigned x = (scenario >> 4);
1053         unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1054         unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1055 
1056         if (mask > 0x1f) {
1057             /* Finish by testing state from instruction 'itt al' */
1058             cond_base = 7;
1059             mask = 0x4;
1060             if ((scenario & 0xf) == 0xf)
1061                 is_last_scenario = true;
1062         }
1063 
1064         cpsr |= cond_base << 13;    /* ITSTATE<7:5> */
1065         cpsr |= (mask & 0x1) << 12; /* ITSTATE<4> */
1066         cpsr |= (mask & 0x2) << 10; /* ITSTATE<3> */
1067         cpsr |= (mask & 0x4) << 8;  /* ITSTATE<2> */
1068         cpsr |= (mask & 0x8) << 23; /* ITSTATE<1> */
1069         cpsr |= (mask & 0x10) << 21;    /* ITSTATE<0> */
1070 
1071         probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1072 
1073     } else {
1074         /* Testing Thumb code with several combinations of ITSTATE */
1075         switch (scenario) {
1076         case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1077             cpsr = 0x00000800;
1078             probe_should_run = 0;
1079             break;
1080         case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1081             cpsr = 0xf0007800;
1082             probe_should_run = 0;
1083             break;
1084         case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1085             cpsr = 0x00009800;
1086             break;
1087         case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1088             cpsr = 0xf0002800;
1089             is_last_scenario = true;
1090             break;
1091         }
1092     }
1093 
1094     return cpsr;
1095 }
1096 
1097 static void setup_test_context(struct pt_regs *regs)
1098 {
1099     int scenario = test_case_run_count>>1;
1100     unsigned long val;
1101     struct test_arg *args;
1102     int i;
1103 
1104     is_last_scenario = false;
1105     memory_needs_checking = false;
1106 
1107     /* Initialise test memory on stack */
1108     val = (scenario & 1) ? VALM : ~VALM;
1109     for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1110         current_stack[i] = val + (i << 8);
1111     /* Put target of branch on stack for tests which load PC from memory */
1112     if (current_branch_target)
1113         current_stack[15] = current_branch_target;
1114     /* Put a value for SP on stack for tests which load SP from memory */
1115     current_stack[13] = (u32)current_stack + 120;
1116 
1117     /* Initialise register values to their default state */
1118     val = (scenario & 2) ? VALR : ~VALR;
1119     for (i = 0; i < 13; ++i)
1120         regs->uregs[i] = val ^ (i << 8);
1121     regs->ARM_lr = val ^ (14 << 8);
1122     regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1123     regs->ARM_cpsr |= test_context_cpsr(scenario);
1124 
1125     /* Perform testcase specific register setup  */
1126     args = current_args;
1127     for (; args[0].type != ARG_TYPE_END; ++args)
1128         switch (args[0].type) {
1129         case ARG_TYPE_REG: {
1130             struct test_arg_regptr *arg =
1131                 (struct test_arg_regptr *)args;
1132             regs->uregs[arg->reg] = arg->val;
1133             break;
1134         }
1135         case ARG_TYPE_PTR: {
1136             struct test_arg_regptr *arg =
1137                 (struct test_arg_regptr *)args;
1138             regs->uregs[arg->reg] =
1139                 (unsigned long)current_stack + arg->val;
1140             memory_needs_checking = true;
1141             /*
1142              * Test memory at an address below SP is in danger of
1143              * being altered by an interrupt occurring and pushing
1144              * data onto the stack. Disable interrupts to stop this.
1145              */
1146             if (arg->reg == 13)
1147                 regs->ARM_cpsr |= PSR_I_BIT;
1148             break;
1149         }
1150         case ARG_TYPE_MEM: {
1151             struct test_arg_mem *arg = (struct test_arg_mem *)args;
1152             current_stack[arg->index] = arg->val;
1153             break;
1154         }
1155         default:
1156             break;
1157         }
1158 }
1159 
1160 struct test_probe {
1161     struct kprobe   kprobe;
1162     bool        registered;
1163     int     hit;
1164 };
1165 
1166 static void unregister_test_probe(struct test_probe *probe)
1167 {
1168     if (probe->registered) {
1169         unregister_kprobe(&probe->kprobe);
1170         probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1171     }
1172     probe->registered = false;
1173 }
1174 
1175 static int register_test_probe(struct test_probe *probe)
1176 {
1177     int ret;
1178 
1179     if (probe->registered)
1180         BUG();
1181 
1182     ret = register_kprobe(&probe->kprobe);
1183     if (ret >= 0) {
1184         probe->registered = true;
1185         probe->hit = -1;
1186     }
1187     return ret;
1188 }
1189 
1190 static int __kprobes
1191 test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1192 {
1193     container_of(p, struct test_probe, kprobe)->hit = test_instance;
1194     return 0;
1195 }
1196 
1197 static void __kprobes
1198 test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1199                             unsigned long flags)
1200 {
1201     setup_test_context(regs);
1202     initial_regs = *regs;
1203     initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1204 }
1205 
1206 static int __kprobes
1207 test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1208 {
1209     container_of(p, struct test_probe, kprobe)->hit = test_instance;
1210     return 0;
1211 }
1212 
1213 static int __kprobes
1214 test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1215 {
1216     struct test_arg *args;
1217 
1218     if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1219         return 0; /* Already run for this test instance */
1220 
1221     result_regs = *regs;
1222 
1223     /* Mask out results which are indeterminate */
1224     result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1225     for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
1226         if (args[0].type == ARG_TYPE_REG_MASKED) {
1227             struct test_arg_regptr *arg =
1228                 (struct test_arg_regptr *)args;
1229             result_regs.uregs[arg->reg] &= arg->val;
1230         }
1231 
1232     /* Undo any changes done to SP by the test case */
1233     regs->ARM_sp = (unsigned long)current_stack;
1234     /* Enable interrupts in case setup_test_context disabled them */
1235     regs->ARM_cpsr &= ~PSR_I_BIT;
1236 
1237     container_of(p, struct test_probe, kprobe)->hit = test_instance;
1238     return 0;
1239 }
1240 
1241 static struct test_probe test_before_probe = {
1242     .kprobe.pre_handler = test_before_pre_handler,
1243     .kprobe.post_handler    = test_before_post_handler,
1244 };
1245 
1246 static struct test_probe test_case_probe = {
1247     .kprobe.pre_handler = test_case_pre_handler,
1248 };
1249 
1250 static struct test_probe test_after_probe = {
1251     .kprobe.pre_handler = test_after_pre_handler,
1252 };
1253 
1254 static struct test_probe test_after2_probe = {
1255     .kprobe.pre_handler = test_after_pre_handler,
1256 };
1257 
1258 static void test_case_cleanup(void)
1259 {
1260     unregister_test_probe(&test_before_probe);
1261     unregister_test_probe(&test_case_probe);
1262     unregister_test_probe(&test_after_probe);
1263     unregister_test_probe(&test_after2_probe);
1264 }
1265 
1266 static void print_registers(struct pt_regs *regs)
1267 {
1268     pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1269         regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1270     pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1271         regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1272     pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1273         regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1274     pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1275         regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1276     pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1277 }
1278 
1279 static void print_memory(u32 *mem, size_t size)
1280 {
1281     int i;
1282     for (i = 0; i < size / sizeof(u32); i += 4)
1283         pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1284                         mem[i+2], mem[i+3]);
1285 }
1286 
1287 static size_t expected_memory_size(u32 *sp)
1288 {
1289     size_t size = sizeof(expected_memory);
1290     int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1291     if (offset > 0)
1292         size -= offset;
1293     return size;
1294 }
1295 
1296 static void test_case_failed(const char *message)
1297 {
1298     test_case_cleanup();
1299 
1300     pr_err("FAIL: %s\n", message);
1301     pr_err("FAIL: Test %s\n", current_title);
1302     pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1303 }
1304 
1305 static unsigned long next_instruction(unsigned long pc)
1306 {
1307 #ifdef CONFIG_THUMB2_KERNEL
1308     if ((pc & 1) &&
1309         !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1310         return pc + 2;
1311     else
1312 #endif
1313     return pc + 4;
1314 }
1315 
1316 static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
1317 {
1318     struct test_arg *args;
1319     struct test_arg_end *end_arg;
1320     unsigned long test_code;
1321 
1322     current_title = *title++;
1323     args = (struct test_arg *)title;
1324     current_args = args;
1325     current_stack = stack;
1326 
1327     ++test_try_count;
1328 
1329     while (args->type != ARG_TYPE_END)
1330         ++args;
1331     end_arg = (struct test_arg_end *)args;
1332 
1333     test_code = (unsigned long)(args + 1); /* Code starts after args */
1334 
1335     test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1336     if (test_case_is_thumb)
1337         test_code |= 1;
1338 
1339     current_code_start = test_code;
1340 
1341     current_branch_target = 0;
1342     if (end_arg->branch_offset != end_arg->end_offset)
1343         current_branch_target = test_code + end_arg->branch_offset;
1344 
1345     test_code += end_arg->code_offset;
1346     test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1347 
1348     test_code = next_instruction(test_code);
1349     test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1350 
1351     if (test_case_is_thumb) {
1352         u16 *p = (u16 *)(test_code & ~1);
1353         current_instruction = __mem_to_opcode_thumb16(p[0]);
1354         if (is_wide_instruction(current_instruction)) {
1355             u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1356             current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1357         }
1358     } else {
1359         current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1360     }
1361 
1362     if (current_title[0] == '.')
1363         verbose("%s\n", current_title);
1364     else
1365         verbose("%s\t@ %0*x\n", current_title,
1366                     test_case_is_thumb ? 4 : 8,
1367                     current_instruction);
1368 
1369     test_code = next_instruction(test_code);
1370     test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1371 
1372     if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1373         if (!test_case_is_thumb ||
1374             is_wide_instruction(current_instruction)) {
1375                 test_case_failed("expected 16-bit instruction");
1376                 goto fail;
1377         }
1378     } else {
1379         if (test_case_is_thumb &&
1380             !is_wide_instruction(current_instruction)) {
1381                 test_case_failed("expected 32-bit instruction");
1382                 goto fail;
1383         }
1384     }
1385 
1386     coverage_add(current_instruction);
1387 
1388     if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1389         if (register_test_probe(&test_case_probe) < 0)
1390             goto pass;
1391         test_case_failed("registered probe for unsupported instruction");
1392         goto fail;
1393     }
1394 
1395     if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1396         if (register_test_probe(&test_case_probe) >= 0)
1397             goto pass;
1398         test_case_failed("couldn't register probe for supported instruction");
1399         goto fail;
1400     }
1401 
1402     if (register_test_probe(&test_before_probe) < 0) {
1403         test_case_failed("register test_before_probe failed");
1404         goto fail;
1405     }
1406     if (register_test_probe(&test_after_probe) < 0) {
1407         test_case_failed("register test_after_probe failed");
1408         goto fail;
1409     }
1410     if (current_branch_target) {
1411         test_after2_probe.kprobe.addr =
1412                 (kprobe_opcode_t *)current_branch_target;
1413         if (register_test_probe(&test_after2_probe) < 0) {
1414             test_case_failed("register test_after2_probe failed");
1415             goto fail;
1416         }
1417     }
1418 
1419     /* Start first run of test case */
1420     test_case_run_count = 0;
1421     ++test_instance;
1422     return current_code_start;
1423 pass:
1424     test_case_run_count = TEST_CASE_PASSED;
1425     return (uintptr_t)test_after_probe.kprobe.addr;
1426 fail:
1427     test_case_run_count = TEST_CASE_FAILED;
1428     return (uintptr_t)test_after_probe.kprobe.addr;
1429 }
1430 
1431 static bool check_test_results(void)
1432 {
1433     size_t mem_size = 0;
1434     u32 *mem = 0;
1435 
1436     if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1437         test_case_failed("registers differ");
1438         goto fail;
1439     }
1440 
1441     if (memory_needs_checking) {
1442         mem = (u32 *)result_regs.ARM_sp;
1443         mem_size = expected_memory_size(mem);
1444         if (memcmp(expected_memory, mem, mem_size)) {
1445             test_case_failed("test memory differs");
1446             goto fail;
1447         }
1448     }
1449 
1450     return true;
1451 
1452 fail:
1453     pr_err("initial_regs:\n");
1454     print_registers(&initial_regs);
1455     pr_err("expected_regs:\n");
1456     print_registers(&expected_regs);
1457     pr_err("result_regs:\n");
1458     print_registers(&result_regs);
1459 
1460     if (mem) {
1461         pr_err("expected_memory:\n");
1462         print_memory(expected_memory, mem_size);
1463         pr_err("result_memory:\n");
1464         print_memory(mem, mem_size);
1465     }
1466 
1467     return false;
1468 }
1469 
1470 static uintptr_t __used kprobes_test_case_end(void)
1471 {
1472     if (test_case_run_count < 0) {
1473         if (test_case_run_count == TEST_CASE_PASSED)
1474             /* kprobes_test_case_start did all the needed testing */
1475             goto pass;
1476         else
1477             /* kprobes_test_case_start failed */
1478             goto fail;
1479     }
1480 
1481     if (test_before_probe.hit != test_instance) {
1482         test_case_failed("test_before_handler not run");
1483         goto fail;
1484     }
1485 
1486     if (test_after_probe.hit != test_instance &&
1487                 test_after2_probe.hit != test_instance) {
1488         test_case_failed("test_after_handler not run");
1489         goto fail;
1490     }
1491 
1492     /*
1493      * Even numbered test runs ran without a probe on the test case so
1494      * we can gather reference results. The subsequent odd numbered run
1495      * will have the probe inserted.
1496     */
1497     if ((test_case_run_count & 1) == 0) {
1498         /* Save results from run without probe */
1499         u32 *mem = (u32 *)result_regs.ARM_sp;
1500         expected_regs = result_regs;
1501         memcpy(expected_memory, mem, expected_memory_size(mem));
1502 
1503         /* Insert probe onto test case instruction */
1504         if (register_test_probe(&test_case_probe) < 0) {
1505             test_case_failed("register test_case_probe failed");
1506             goto fail;
1507         }
1508     } else {
1509         /* Check probe ran as expected */
1510         if (probe_should_run == 1) {
1511             if (test_case_probe.hit != test_instance) {
1512                 test_case_failed("test_case_handler not run");
1513                 goto fail;
1514             }
1515         } else if (probe_should_run == 0) {
1516             if (test_case_probe.hit == test_instance) {
1517                 test_case_failed("test_case_handler ran");
1518                 goto fail;
1519             }
1520         }
1521 
1522         /* Remove probe for any subsequent reference run */
1523         unregister_test_probe(&test_case_probe);
1524 
1525         if (!check_test_results())
1526             goto fail;
1527 
1528         if (is_last_scenario)
1529             goto pass;
1530     }
1531 
1532     /* Do next test run */
1533     ++test_case_run_count;
1534     ++test_instance;
1535     return current_code_start;
1536 fail:
1537     ++test_fail_count;
1538     goto end;
1539 pass:
1540     ++test_pass_count;
1541 end:
1542     test_case_cleanup();
1543     return 0;
1544 }
1545 
1546 
1547 /*
1548  * Top level test functions
1549  */
1550 
1551 static int run_test_cases(void (*tests)(void), const union decode_item *table)
1552 {
1553     int ret;
1554 
1555     pr_info("    Check decoding tables\n");
1556     ret = table_test(table);
1557     if (ret)
1558         return ret;
1559 
1560     pr_info("    Run test cases\n");
1561     ret = coverage_start(table);
1562     if (ret)
1563         return ret;
1564 
1565     tests();
1566 
1567     coverage_end();
1568     return 0;
1569 }
1570 
1571 
1572 static int __init run_all_tests(void)
1573 {
1574     int ret = 0;
1575 
1576     pr_info("Beginning kprobe tests...\n");
1577 
1578 #ifndef CONFIG_THUMB2_KERNEL
1579 
1580     pr_info("Probe ARM code\n");
1581     ret = run_api_tests(arm_func);
1582     if (ret)
1583         goto out;
1584 
1585     pr_info("ARM instruction simulation\n");
1586     ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1587     if (ret)
1588         goto out;
1589 
1590 #else /* CONFIG_THUMB2_KERNEL */
1591 
1592     pr_info("Probe 16-bit Thumb code\n");
1593     ret = run_api_tests(thumb16_func);
1594     if (ret)
1595         goto out;
1596 
1597     pr_info("Probe 32-bit Thumb code, even halfword\n");
1598     ret = run_api_tests(thumb32even_func);
1599     if (ret)
1600         goto out;
1601 
1602     pr_info("Probe 32-bit Thumb code, odd halfword\n");
1603     ret = run_api_tests(thumb32odd_func);
1604     if (ret)
1605         goto out;
1606 
1607     pr_info("16-bit Thumb instruction simulation\n");
1608     ret = run_test_cases(kprobe_thumb16_test_cases,
1609                 probes_decode_thumb16_table);
1610     if (ret)
1611         goto out;
1612 
1613     pr_info("32-bit Thumb instruction simulation\n");
1614     ret = run_test_cases(kprobe_thumb32_test_cases,
1615                 probes_decode_thumb32_table);
1616     if (ret)
1617         goto out;
1618 #endif
1619 
1620     pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1621         test_try_count, test_pass_count, test_fail_count);
1622     if (test_fail_count) {
1623         ret = -EINVAL;
1624         goto out;
1625     }
1626 
1627 #if BENCHMARKING
1628     pr_info("Benchmarks\n");
1629     ret = run_benchmarks();
1630     if (ret)
1631         goto out;
1632 #endif
1633 
1634 #if __LINUX_ARM_ARCH__ >= 7
1635     /* We are able to run all test cases so coverage should be complete */
1636     if (coverage_fail) {
1637         pr_err("FAIL: Test coverage checks failed\n");
1638         ret = -EINVAL;
1639         goto out;
1640     }
1641 #endif
1642 
1643 out:
1644     if (ret == 0)
1645         ret = tests_failed;
1646     if (ret == 0)
1647         pr_info("Finished kprobe tests OK\n");
1648     else
1649         pr_err("kprobe tests failed\n");
1650 
1651     return ret;
1652 }
1653 
1654 
1655 /*
1656  * Module setup
1657  */
1658 
1659 #ifdef MODULE
1660 
1661 static void __exit kprobe_test_exit(void)
1662 {
1663 }
1664 
1665 module_init(run_all_tests)
1666 module_exit(kprobe_test_exit)
1667 MODULE_LICENSE("GPL");
1668 
1669 #else /* !MODULE */
1670 
1671 late_initcall(run_all_tests);
1672 
1673 #endif