Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003     NetWinder Floating Point Emulator
0004     (c) Rebel.COM, 1998,1999
0005     (c) Philip Blundell, 2001
0006 
0007     Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
0008 
0009 */
0010 
0011 #include "fpa11.h"
0012 #include "softfloat.h"
0013 #include "fpopcode.h"
0014 
0015 float32 float32_exp(float32 Fm);
0016 float32 float32_ln(float32 Fm);
0017 float32 float32_sin(float32 rFm);
0018 float32 float32_cos(float32 rFm);
0019 float32 float32_arcsin(float32 rFm);
0020 float32 float32_arctan(float32 rFm);
0021 float32 float32_log(float32 rFm);
0022 float32 float32_tan(float32 rFm);
0023 float32 float32_arccos(float32 rFm);
0024 float32 float32_pow(float32 rFn, float32 rFm);
0025 float32 float32_pol(float32 rFn, float32 rFm);
0026 
0027 static float32 float32_rsf(struct roundingData *roundData, float32 rFn, float32 rFm)
0028 {
0029     return float32_sub(roundData, rFm, rFn);
0030 }
0031 
0032 static float32 float32_rdv(struct roundingData *roundData, float32 rFn, float32 rFm)
0033 {
0034     return float32_div(roundData, rFm, rFn);
0035 }
0036 
0037 static float32 (*const dyadic_single[16])(struct roundingData *, float32 rFn, float32 rFm) = {
0038     [ADF_CODE >> 20] = float32_add,
0039     [MUF_CODE >> 20] = float32_mul,
0040     [SUF_CODE >> 20] = float32_sub,
0041     [RSF_CODE >> 20] = float32_rsf,
0042     [DVF_CODE >> 20] = float32_div,
0043     [RDF_CODE >> 20] = float32_rdv,
0044     [RMF_CODE >> 20] = float32_rem,
0045 
0046     [FML_CODE >> 20] = float32_mul,
0047     [FDV_CODE >> 20] = float32_div,
0048     [FRD_CODE >> 20] = float32_rdv,
0049 };
0050 
0051 static float32 float32_mvf(struct roundingData *roundData, float32 rFm)
0052 {
0053     return rFm;
0054 }
0055 
0056 static float32 float32_mnf(struct roundingData *roundData, float32 rFm)
0057 {
0058     return rFm ^ 0x80000000;
0059 }
0060 
0061 static float32 float32_abs(struct roundingData *roundData, float32 rFm)
0062 {
0063     return rFm & 0x7fffffff;
0064 }
0065 
0066 static float32 (*const monadic_single[16])(struct roundingData*, float32 rFm) = {
0067     [MVF_CODE >> 20] = float32_mvf,
0068     [MNF_CODE >> 20] = float32_mnf,
0069     [ABS_CODE >> 20] = float32_abs,
0070     [RND_CODE >> 20] = float32_round_to_int,
0071     [URD_CODE >> 20] = float32_round_to_int,
0072     [SQT_CODE >> 20] = float32_sqrt,
0073     [NRM_CODE >> 20] = float32_mvf,
0074 };
0075 
0076 unsigned int SingleCPDO(struct roundingData *roundData, const unsigned int opcode, FPREG * rFd)
0077 {
0078     FPA11 *fpa11 = GET_FPA11();
0079     float32 rFm;
0080     unsigned int Fm, opc_mask_shift;
0081 
0082     Fm = getFm(opcode);
0083     if (CONSTANT_FM(opcode)) {
0084         rFm = getSingleConstant(Fm);
0085     } else if (fpa11->fType[Fm] == typeSingle) {
0086         rFm = fpa11->fpreg[Fm].fSingle;
0087     } else {
0088         return 0;
0089     }
0090 
0091     opc_mask_shift = (opcode & MASK_ARITHMETIC_OPCODE) >> 20;
0092     if (!MONADIC_INSTRUCTION(opcode)) {
0093         unsigned int Fn = getFn(opcode);
0094         float32 rFn;
0095 
0096         if (fpa11->fType[Fn] == typeSingle &&
0097             dyadic_single[opc_mask_shift]) {
0098             rFn = fpa11->fpreg[Fn].fSingle;
0099             rFd->fSingle = dyadic_single[opc_mask_shift](roundData, rFn, rFm);
0100         } else {
0101             return 0;
0102         }
0103     } else {
0104         if (monadic_single[opc_mask_shift]) {
0105             rFd->fSingle = monadic_single[opc_mask_shift](roundData, rFm);
0106         } else {
0107             return 0;
0108         }
0109     }
0110 
0111     return 1;
0112 }