Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/arch/arm/mm/mmu.c
0004  *
0005  *  Copyright (C) 1995-2005 Russell King
0006  */
0007 #include <linux/module.h>
0008 #include <linux/kernel.h>
0009 #include <linux/errno.h>
0010 #include <linux/init.h>
0011 #include <linux/mman.h>
0012 #include <linux/nodemask.h>
0013 #include <linux/memblock.h>
0014 #include <linux/fs.h>
0015 #include <linux/vmalloc.h>
0016 #include <linux/sizes.h>
0017 
0018 #include <asm/cp15.h>
0019 #include <asm/cputype.h>
0020 #include <asm/cachetype.h>
0021 #include <asm/sections.h>
0022 #include <asm/setup.h>
0023 #include <asm/smp_plat.h>
0024 #include <asm/tlb.h>
0025 #include <asm/highmem.h>
0026 #include <asm/system_info.h>
0027 #include <asm/traps.h>
0028 #include <asm/procinfo.h>
0029 #include <asm/memory.h>
0030 #include <asm/pgalloc.h>
0031 #include <asm/kasan_def.h>
0032 
0033 #include <asm/mach/arch.h>
0034 #include <asm/mach/map.h>
0035 #include <asm/mach/pci.h>
0036 #include <asm/fixmap.h>
0037 
0038 #include "fault.h"
0039 #include "mm.h"
0040 #include "tcm.h"
0041 
0042 extern unsigned long __atags_pointer;
0043 
0044 /*
0045  * empty_zero_page is a special page that is used for
0046  * zero-initialized data and COW.
0047  */
0048 struct page *empty_zero_page;
0049 EXPORT_SYMBOL(empty_zero_page);
0050 
0051 /*
0052  * The pmd table for the upper-most set of pages.
0053  */
0054 pmd_t *top_pmd;
0055 
0056 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
0057 
0058 #define CPOLICY_UNCACHED    0
0059 #define CPOLICY_BUFFERED    1
0060 #define CPOLICY_WRITETHROUGH    2
0061 #define CPOLICY_WRITEBACK   3
0062 #define CPOLICY_WRITEALLOC  4
0063 
0064 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
0065 static unsigned int ecc_mask __initdata = 0;
0066 pgprot_t pgprot_user;
0067 pgprot_t pgprot_kernel;
0068 
0069 EXPORT_SYMBOL(pgprot_user);
0070 EXPORT_SYMBOL(pgprot_kernel);
0071 
0072 struct cachepolicy {
0073     const char  policy[16];
0074     unsigned int    cr_mask;
0075     pmdval_t    pmd;
0076     pteval_t    pte;
0077 };
0078 
0079 static struct cachepolicy cache_policies[] __initdata = {
0080     {
0081         .policy     = "uncached",
0082         .cr_mask    = CR_W|CR_C,
0083         .pmd        = PMD_SECT_UNCACHED,
0084         .pte        = L_PTE_MT_UNCACHED,
0085     }, {
0086         .policy     = "buffered",
0087         .cr_mask    = CR_C,
0088         .pmd        = PMD_SECT_BUFFERED,
0089         .pte        = L_PTE_MT_BUFFERABLE,
0090     }, {
0091         .policy     = "writethrough",
0092         .cr_mask    = 0,
0093         .pmd        = PMD_SECT_WT,
0094         .pte        = L_PTE_MT_WRITETHROUGH,
0095     }, {
0096         .policy     = "writeback",
0097         .cr_mask    = 0,
0098         .pmd        = PMD_SECT_WB,
0099         .pte        = L_PTE_MT_WRITEBACK,
0100     }, {
0101         .policy     = "writealloc",
0102         .cr_mask    = 0,
0103         .pmd        = PMD_SECT_WBWA,
0104         .pte        = L_PTE_MT_WRITEALLOC,
0105     }
0106 };
0107 
0108 #ifdef CONFIG_CPU_CP15
0109 static unsigned long initial_pmd_value __initdata = 0;
0110 
0111 /*
0112  * Initialise the cache_policy variable with the initial state specified
0113  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
0114  * the C code sets the page tables up with the same policy as the head
0115  * assembly code, which avoids an illegal state where the TLBs can get
0116  * confused.  See comments in early_cachepolicy() for more information.
0117  */
0118 void __init init_default_cache_policy(unsigned long pmd)
0119 {
0120     int i;
0121 
0122     initial_pmd_value = pmd;
0123 
0124     pmd &= PMD_SECT_CACHE_MASK;
0125 
0126     for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
0127         if (cache_policies[i].pmd == pmd) {
0128             cachepolicy = i;
0129             break;
0130         }
0131 
0132     if (i == ARRAY_SIZE(cache_policies))
0133         pr_err("ERROR: could not find cache policy\n");
0134 }
0135 
0136 /*
0137  * These are useful for identifying cache coherency problems by allowing
0138  * the cache or the cache and writebuffer to be turned off.  (Note: the
0139  * write buffer should not be on and the cache off).
0140  */
0141 static int __init early_cachepolicy(char *p)
0142 {
0143     int i, selected = -1;
0144 
0145     for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
0146         int len = strlen(cache_policies[i].policy);
0147 
0148         if (memcmp(p, cache_policies[i].policy, len) == 0) {
0149             selected = i;
0150             break;
0151         }
0152     }
0153 
0154     if (selected == -1)
0155         pr_err("ERROR: unknown or unsupported cache policy\n");
0156 
0157     /*
0158      * This restriction is partly to do with the way we boot; it is
0159      * unpredictable to have memory mapped using two different sets of
0160      * memory attributes (shared, type, and cache attribs).  We can not
0161      * change these attributes once the initial assembly has setup the
0162      * page tables.
0163      */
0164     if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
0165         pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
0166             cache_policies[cachepolicy].policy);
0167         return 0;
0168     }
0169 
0170     if (selected != cachepolicy) {
0171         unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
0172         cachepolicy = selected;
0173         flush_cache_all();
0174         set_cr(cr);
0175     }
0176     return 0;
0177 }
0178 early_param("cachepolicy", early_cachepolicy);
0179 
0180 static int __init early_nocache(char *__unused)
0181 {
0182     char *p = "buffered";
0183     pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
0184     early_cachepolicy(p);
0185     return 0;
0186 }
0187 early_param("nocache", early_nocache);
0188 
0189 static int __init early_nowrite(char *__unused)
0190 {
0191     char *p = "uncached";
0192     pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
0193     early_cachepolicy(p);
0194     return 0;
0195 }
0196 early_param("nowb", early_nowrite);
0197 
0198 #ifndef CONFIG_ARM_LPAE
0199 static int __init early_ecc(char *p)
0200 {
0201     if (memcmp(p, "on", 2) == 0)
0202         ecc_mask = PMD_PROTECTION;
0203     else if (memcmp(p, "off", 3) == 0)
0204         ecc_mask = 0;
0205     return 0;
0206 }
0207 early_param("ecc", early_ecc);
0208 #endif
0209 
0210 #else /* ifdef CONFIG_CPU_CP15 */
0211 
0212 static int __init early_cachepolicy(char *p)
0213 {
0214     pr_warn("cachepolicy kernel parameter not supported without cp15\n");
0215     return 0;
0216 }
0217 early_param("cachepolicy", early_cachepolicy);
0218 
0219 static int __init noalign_setup(char *__unused)
0220 {
0221     pr_warn("noalign kernel parameter not supported without cp15\n");
0222     return 1;
0223 }
0224 __setup("noalign", noalign_setup);
0225 
0226 #endif /* ifdef CONFIG_CPU_CP15 / else */
0227 
0228 #define PROT_PTE_DEVICE     L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
0229 #define PROT_PTE_S2_DEVICE  PROT_PTE_DEVICE
0230 #define PROT_SECT_DEVICE    PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0231 
0232 static struct mem_type mem_types[] __ro_after_init = {
0233     [MT_DEVICE] = {       /* Strongly ordered / ARMv6 shared device */
0234         .prot_pte   = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
0235                   L_PTE_SHARED,
0236         .prot_l1    = PMD_TYPE_TABLE,
0237         .prot_sect  = PROT_SECT_DEVICE | PMD_SECT_S,
0238         .domain     = DOMAIN_IO,
0239     },
0240     [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
0241         .prot_pte   = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0242         .prot_l1    = PMD_TYPE_TABLE,
0243         .prot_sect  = PROT_SECT_DEVICE,
0244         .domain     = DOMAIN_IO,
0245     },
0246     [MT_DEVICE_CACHED] = {    /* ioremap_cache */
0247         .prot_pte   = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0248         .prot_l1    = PMD_TYPE_TABLE,
0249         .prot_sect  = PROT_SECT_DEVICE | PMD_SECT_WB,
0250         .domain     = DOMAIN_IO,
0251     },
0252     [MT_DEVICE_WC] = {  /* ioremap_wc */
0253         .prot_pte   = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0254         .prot_l1    = PMD_TYPE_TABLE,
0255         .prot_sect  = PROT_SECT_DEVICE,
0256         .domain     = DOMAIN_IO,
0257     },
0258     [MT_UNCACHED] = {
0259         .prot_pte   = PROT_PTE_DEVICE,
0260         .prot_l1    = PMD_TYPE_TABLE,
0261         .prot_sect  = PMD_TYPE_SECT | PMD_SECT_XN,
0262         .domain     = DOMAIN_IO,
0263     },
0264     [MT_CACHECLEAN] = {
0265         .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
0266         .domain    = DOMAIN_KERNEL,
0267     },
0268 #ifndef CONFIG_ARM_LPAE
0269     [MT_MINICLEAN] = {
0270         .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
0271         .domain    = DOMAIN_KERNEL,
0272     },
0273 #endif
0274     [MT_LOW_VECTORS] = {
0275         .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
0276                 L_PTE_RDONLY,
0277         .prot_l1   = PMD_TYPE_TABLE,
0278         .domain    = DOMAIN_VECTORS,
0279     },
0280     [MT_HIGH_VECTORS] = {
0281         .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
0282                 L_PTE_USER | L_PTE_RDONLY,
0283         .prot_l1   = PMD_TYPE_TABLE,
0284         .domain    = DOMAIN_VECTORS,
0285     },
0286     [MT_MEMORY_RWX] = {
0287         .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
0288         .prot_l1   = PMD_TYPE_TABLE,
0289         .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
0290         .domain    = DOMAIN_KERNEL,
0291     },
0292     [MT_MEMORY_RW] = {
0293         .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
0294                  L_PTE_XN,
0295         .prot_l1   = PMD_TYPE_TABLE,
0296         .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
0297         .domain    = DOMAIN_KERNEL,
0298     },
0299     [MT_MEMORY_RO] = {
0300         .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
0301                  L_PTE_XN | L_PTE_RDONLY,
0302         .prot_l1   = PMD_TYPE_TABLE,
0303         .prot_sect = PMD_TYPE_SECT,
0304         .domain    = DOMAIN_KERNEL,
0305     },
0306     [MT_ROM] = {
0307         .prot_sect = PMD_TYPE_SECT,
0308         .domain    = DOMAIN_KERNEL,
0309     },
0310     [MT_MEMORY_RWX_NONCACHED] = {
0311         .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
0312                 L_PTE_MT_BUFFERABLE,
0313         .prot_l1   = PMD_TYPE_TABLE,
0314         .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
0315         .domain    = DOMAIN_KERNEL,
0316     },
0317     [MT_MEMORY_RW_DTCM] = {
0318         .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
0319                 L_PTE_XN,
0320         .prot_l1   = PMD_TYPE_TABLE,
0321         .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
0322         .domain    = DOMAIN_KERNEL,
0323     },
0324     [MT_MEMORY_RWX_ITCM] = {
0325         .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
0326         .prot_l1   = PMD_TYPE_TABLE,
0327         .domain    = DOMAIN_KERNEL,
0328     },
0329     [MT_MEMORY_RW_SO] = {
0330         .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
0331                 L_PTE_MT_UNCACHED | L_PTE_XN,
0332         .prot_l1   = PMD_TYPE_TABLE,
0333         .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
0334                 PMD_SECT_UNCACHED | PMD_SECT_XN,
0335         .domain    = DOMAIN_KERNEL,
0336     },
0337     [MT_MEMORY_DMA_READY] = {
0338         .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
0339                 L_PTE_XN,
0340         .prot_l1   = PMD_TYPE_TABLE,
0341         .domain    = DOMAIN_KERNEL,
0342     },
0343 };
0344 
0345 const struct mem_type *get_mem_type(unsigned int type)
0346 {
0347     return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
0348 }
0349 EXPORT_SYMBOL(get_mem_type);
0350 
0351 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
0352 
0353 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
0354     __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
0355 
0356 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
0357 {
0358     return &bm_pte[pte_index(addr)];
0359 }
0360 
0361 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
0362 {
0363     return pte_offset_kernel(dir, addr);
0364 }
0365 
0366 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
0367 {
0368     return pmd_off_k(addr);
0369 }
0370 
0371 void __init early_fixmap_init(void)
0372 {
0373     pmd_t *pmd;
0374 
0375     /*
0376      * The early fixmap range spans multiple pmds, for which
0377      * we are not prepared:
0378      */
0379     BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
0380              != FIXADDR_TOP >> PMD_SHIFT);
0381 
0382     pmd = fixmap_pmd(FIXADDR_TOP);
0383     pmd_populate_kernel(&init_mm, pmd, bm_pte);
0384 
0385     pte_offset_fixmap = pte_offset_early_fixmap;
0386 }
0387 
0388 /*
0389  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
0390  * As a result, this can only be called with preemption disabled, as under
0391  * stop_machine().
0392  */
0393 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
0394 {
0395     unsigned long vaddr = __fix_to_virt(idx);
0396     pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
0397 
0398     /* Make sure fixmap region does not exceed available allocation. */
0399     BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
0400     BUG_ON(idx >= __end_of_fixed_addresses);
0401 
0402     /* We support only device mappings before pgprot_kernel is set. */
0403     if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
0404             pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
0405         return;
0406 
0407     if (pgprot_val(prot))
0408         set_pte_at(NULL, vaddr, pte,
0409             pfn_pte(phys >> PAGE_SHIFT, prot));
0410     else
0411         pte_clear(NULL, vaddr, pte);
0412     local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
0413 }
0414 
0415 static pgprot_t protection_map[16] __ro_after_init = {
0416     [VM_NONE]                   = __PAGE_NONE,
0417     [VM_READ]                   = __PAGE_READONLY,
0418     [VM_WRITE]                  = __PAGE_COPY,
0419     [VM_WRITE | VM_READ]                = __PAGE_COPY,
0420     [VM_EXEC]                   = __PAGE_READONLY_EXEC,
0421     [VM_EXEC | VM_READ]             = __PAGE_READONLY_EXEC,
0422     [VM_EXEC | VM_WRITE]                = __PAGE_COPY_EXEC,
0423     [VM_EXEC | VM_WRITE | VM_READ]          = __PAGE_COPY_EXEC,
0424     [VM_SHARED]                 = __PAGE_NONE,
0425     [VM_SHARED | VM_READ]               = __PAGE_READONLY,
0426     [VM_SHARED | VM_WRITE]              = __PAGE_SHARED,
0427     [VM_SHARED | VM_WRITE | VM_READ]        = __PAGE_SHARED,
0428     [VM_SHARED | VM_EXEC]               = __PAGE_READONLY_EXEC,
0429     [VM_SHARED | VM_EXEC | VM_READ]         = __PAGE_READONLY_EXEC,
0430     [VM_SHARED | VM_EXEC | VM_WRITE]        = __PAGE_SHARED_EXEC,
0431     [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]  = __PAGE_SHARED_EXEC
0432 };
0433 DECLARE_VM_GET_PAGE_PROT
0434 
0435 /*
0436  * Adjust the PMD section entries according to the CPU in use.
0437  */
0438 static void __init build_mem_type_table(void)
0439 {
0440     struct cachepolicy *cp;
0441     unsigned int cr = get_cr();
0442     pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
0443     int cpu_arch = cpu_architecture();
0444     int i;
0445 
0446     if (cpu_arch < CPU_ARCH_ARMv6) {
0447 #if defined(CONFIG_CPU_DCACHE_DISABLE)
0448         if (cachepolicy > CPOLICY_BUFFERED)
0449             cachepolicy = CPOLICY_BUFFERED;
0450 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
0451         if (cachepolicy > CPOLICY_WRITETHROUGH)
0452             cachepolicy = CPOLICY_WRITETHROUGH;
0453 #endif
0454     }
0455     if (cpu_arch < CPU_ARCH_ARMv5) {
0456         if (cachepolicy >= CPOLICY_WRITEALLOC)
0457             cachepolicy = CPOLICY_WRITEBACK;
0458         ecc_mask = 0;
0459     }
0460 
0461     if (is_smp()) {
0462         if (cachepolicy != CPOLICY_WRITEALLOC) {
0463             pr_warn("Forcing write-allocate cache policy for SMP\n");
0464             cachepolicy = CPOLICY_WRITEALLOC;
0465         }
0466         if (!(initial_pmd_value & PMD_SECT_S)) {
0467             pr_warn("Forcing shared mappings for SMP\n");
0468             initial_pmd_value |= PMD_SECT_S;
0469         }
0470     }
0471 
0472     /*
0473      * Strip out features not present on earlier architectures.
0474      * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
0475      * without extended page tables don't have the 'Shared' bit.
0476      */
0477     if (cpu_arch < CPU_ARCH_ARMv5)
0478         for (i = 0; i < ARRAY_SIZE(mem_types); i++)
0479             mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
0480     if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
0481         for (i = 0; i < ARRAY_SIZE(mem_types); i++)
0482             mem_types[i].prot_sect &= ~PMD_SECT_S;
0483 
0484     /*
0485      * ARMv5 and lower, bit 4 must be set for page tables (was: cache
0486      * "update-able on write" bit on ARM610).  However, Xscale and
0487      * Xscale3 require this bit to be cleared.
0488      */
0489     if (cpu_is_xscale_family()) {
0490         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
0491             mem_types[i].prot_sect &= ~PMD_BIT4;
0492             mem_types[i].prot_l1 &= ~PMD_BIT4;
0493         }
0494     } else if (cpu_arch < CPU_ARCH_ARMv6) {
0495         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
0496             if (mem_types[i].prot_l1)
0497                 mem_types[i].prot_l1 |= PMD_BIT4;
0498             if (mem_types[i].prot_sect)
0499                 mem_types[i].prot_sect |= PMD_BIT4;
0500         }
0501     }
0502 
0503     /*
0504      * Mark the device areas according to the CPU/architecture.
0505      */
0506     if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
0507         if (!cpu_is_xsc3()) {
0508             /*
0509              * Mark device regions on ARMv6+ as execute-never
0510              * to prevent speculative instruction fetches.
0511              */
0512             mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
0513             mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
0514             mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
0515             mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
0516 
0517             /* Also setup NX memory mapping */
0518             mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
0519             mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
0520         }
0521         if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
0522             /*
0523              * For ARMv7 with TEX remapping,
0524              * - shared device is SXCB=1100
0525              * - nonshared device is SXCB=0100
0526              * - write combine device mem is SXCB=0001
0527              * (Uncached Normal memory)
0528              */
0529             mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
0530             mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
0531             mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
0532         } else if (cpu_is_xsc3()) {
0533             /*
0534              * For Xscale3,
0535              * - shared device is TEXCB=00101
0536              * - nonshared device is TEXCB=01000
0537              * - write combine device mem is TEXCB=00100
0538              * (Inner/Outer Uncacheable in xsc3 parlance)
0539              */
0540             mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
0541             mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
0542             mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
0543         } else {
0544             /*
0545              * For ARMv6 and ARMv7 without TEX remapping,
0546              * - shared device is TEXCB=00001
0547              * - nonshared device is TEXCB=01000
0548              * - write combine device mem is TEXCB=00100
0549              * (Uncached Normal in ARMv6 parlance).
0550              */
0551             mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
0552             mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
0553             mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
0554         }
0555     } else {
0556         /*
0557          * On others, write combining is "Uncached/Buffered"
0558          */
0559         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
0560     }
0561 
0562     /*
0563      * Now deal with the memory-type mappings
0564      */
0565     cp = &cache_policies[cachepolicy];
0566     vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
0567 
0568 #ifndef CONFIG_ARM_LPAE
0569     /*
0570      * We don't use domains on ARMv6 (since this causes problems with
0571      * v6/v7 kernels), so we must use a separate memory type for user
0572      * r/o, kernel r/w to map the vectors page.
0573      */
0574     if (cpu_arch == CPU_ARCH_ARMv6)
0575         vecs_pgprot |= L_PTE_MT_VECTORS;
0576 
0577     /*
0578      * Check is it with support for the PXN bit
0579      * in the Short-descriptor translation table format descriptors.
0580      */
0581     if (cpu_arch == CPU_ARCH_ARMv7 &&
0582         (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
0583         user_pmd_table |= PMD_PXNTABLE;
0584     }
0585 #endif
0586 
0587     /*
0588      * ARMv6 and above have extended page tables.
0589      */
0590     if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
0591 #ifndef CONFIG_ARM_LPAE
0592         /*
0593          * Mark cache clean areas and XIP ROM read only
0594          * from SVC mode and no access from userspace.
0595          */
0596         mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
0597         mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
0598         mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
0599         mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
0600 #endif
0601 
0602         /*
0603          * If the initial page tables were created with the S bit
0604          * set, then we need to do the same here for the same
0605          * reasons given in early_cachepolicy().
0606          */
0607         if (initial_pmd_value & PMD_SECT_S) {
0608             user_pgprot |= L_PTE_SHARED;
0609             kern_pgprot |= L_PTE_SHARED;
0610             vecs_pgprot |= L_PTE_SHARED;
0611             mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
0612             mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
0613             mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
0614             mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
0615             mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
0616             mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
0617             mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
0618             mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
0619             mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
0620             mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
0621             mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
0622             mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
0623             mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
0624         }
0625     }
0626 
0627     /*
0628      * Non-cacheable Normal - intended for memory areas that must
0629      * not cause dirty cache line writebacks when used
0630      */
0631     if (cpu_arch >= CPU_ARCH_ARMv6) {
0632         if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
0633             /* Non-cacheable Normal is XCB = 001 */
0634             mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
0635                 PMD_SECT_BUFFERED;
0636         } else {
0637             /* For both ARMv6 and non-TEX-remapping ARMv7 */
0638             mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
0639                 PMD_SECT_TEX(1);
0640         }
0641     } else {
0642         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
0643     }
0644 
0645 #ifdef CONFIG_ARM_LPAE
0646     /*
0647      * Do not generate access flag faults for the kernel mappings.
0648      */
0649     for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
0650         mem_types[i].prot_pte |= PTE_EXT_AF;
0651         if (mem_types[i].prot_sect)
0652             mem_types[i].prot_sect |= PMD_SECT_AF;
0653     }
0654     kern_pgprot |= PTE_EXT_AF;
0655     vecs_pgprot |= PTE_EXT_AF;
0656 
0657     /*
0658      * Set PXN for user mappings
0659      */
0660     user_pgprot |= PTE_EXT_PXN;
0661 #endif
0662 
0663     for (i = 0; i < 16; i++) {
0664         pteval_t v = pgprot_val(protection_map[i]);
0665         protection_map[i] = __pgprot(v | user_pgprot);
0666     }
0667 
0668     mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
0669     mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
0670 
0671     pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
0672     pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
0673                  L_PTE_DIRTY | kern_pgprot);
0674 
0675     mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
0676     mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
0677     mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
0678     mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
0679     mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
0680     mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
0681     mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
0682     mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
0683     mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
0684     mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
0685     mem_types[MT_ROM].prot_sect |= cp->pmd;
0686 
0687     switch (cp->pmd) {
0688     case PMD_SECT_WT:
0689         mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
0690         break;
0691     case PMD_SECT_WB:
0692     case PMD_SECT_WBWA:
0693         mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
0694         break;
0695     }
0696     pr_info("Memory policy: %sData cache %s\n",
0697         ecc_mask ? "ECC enabled, " : "", cp->policy);
0698 
0699     for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
0700         struct mem_type *t = &mem_types[i];
0701         if (t->prot_l1)
0702             t->prot_l1 |= PMD_DOMAIN(t->domain);
0703         if (t->prot_sect)
0704             t->prot_sect |= PMD_DOMAIN(t->domain);
0705     }
0706 }
0707 
0708 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
0709 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
0710                   unsigned long size, pgprot_t vma_prot)
0711 {
0712     if (!pfn_valid(pfn))
0713         return pgprot_noncached(vma_prot);
0714     else if (file->f_flags & O_SYNC)
0715         return pgprot_writecombine(vma_prot);
0716     return vma_prot;
0717 }
0718 EXPORT_SYMBOL(phys_mem_access_prot);
0719 #endif
0720 
0721 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
0722 
0723 static void __init *early_alloc(unsigned long sz)
0724 {
0725     void *ptr = memblock_alloc(sz, sz);
0726 
0727     if (!ptr)
0728         panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
0729               __func__, sz, sz);
0730 
0731     return ptr;
0732 }
0733 
0734 static void *__init late_alloc(unsigned long sz)
0735 {
0736     void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
0737 
0738     if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
0739         BUG();
0740     return ptr;
0741 }
0742 
0743 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
0744                 unsigned long prot,
0745                 void *(*alloc)(unsigned long sz))
0746 {
0747     if (pmd_none(*pmd)) {
0748         pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
0749         __pmd_populate(pmd, __pa(pte), prot);
0750     }
0751     BUG_ON(pmd_bad(*pmd));
0752     return pte_offset_kernel(pmd, addr);
0753 }
0754 
0755 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
0756                       unsigned long prot)
0757 {
0758     return arm_pte_alloc(pmd, addr, prot, early_alloc);
0759 }
0760 
0761 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
0762                   unsigned long end, unsigned long pfn,
0763                   const struct mem_type *type,
0764                   void *(*alloc)(unsigned long sz),
0765                   bool ng)
0766 {
0767     pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
0768     do {
0769         set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
0770                 ng ? PTE_EXT_NG : 0);
0771         pfn++;
0772     } while (pte++, addr += PAGE_SIZE, addr != end);
0773 }
0774 
0775 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
0776             unsigned long end, phys_addr_t phys,
0777             const struct mem_type *type, bool ng)
0778 {
0779     pmd_t *p = pmd;
0780 
0781 #ifndef CONFIG_ARM_LPAE
0782     /*
0783      * In classic MMU format, puds and pmds are folded in to
0784      * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
0785      * group of L1 entries making up one logical pointer to
0786      * an L2 table (2MB), where as PMDs refer to the individual
0787      * L1 entries (1MB). Hence increment to get the correct
0788      * offset for odd 1MB sections.
0789      * (See arch/arm/include/asm/pgtable-2level.h)
0790      */
0791     if (addr & SECTION_SIZE)
0792         pmd++;
0793 #endif
0794     do {
0795         *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
0796         phys += SECTION_SIZE;
0797     } while (pmd++, addr += SECTION_SIZE, addr != end);
0798 
0799     flush_pmd_entry(p);
0800 }
0801 
0802 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
0803                       unsigned long end, phys_addr_t phys,
0804                       const struct mem_type *type,
0805                       void *(*alloc)(unsigned long sz), bool ng)
0806 {
0807     pmd_t *pmd = pmd_offset(pud, addr);
0808     unsigned long next;
0809 
0810     do {
0811         /*
0812          * With LPAE, we must loop over to map
0813          * all the pmds for the given range.
0814          */
0815         next = pmd_addr_end(addr, end);
0816 
0817         /*
0818          * Try a section mapping - addr, next and phys must all be
0819          * aligned to a section boundary.
0820          */
0821         if (type->prot_sect &&
0822                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
0823             __map_init_section(pmd, addr, next, phys, type, ng);
0824         } else {
0825             alloc_init_pte(pmd, addr, next,
0826                        __phys_to_pfn(phys), type, alloc, ng);
0827         }
0828 
0829         phys += next - addr;
0830 
0831     } while (pmd++, addr = next, addr != end);
0832 }
0833 
0834 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
0835                   unsigned long end, phys_addr_t phys,
0836                   const struct mem_type *type,
0837                   void *(*alloc)(unsigned long sz), bool ng)
0838 {
0839     pud_t *pud = pud_offset(p4d, addr);
0840     unsigned long next;
0841 
0842     do {
0843         next = pud_addr_end(addr, end);
0844         alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
0845         phys += next - addr;
0846     } while (pud++, addr = next, addr != end);
0847 }
0848 
0849 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
0850                   unsigned long end, phys_addr_t phys,
0851                   const struct mem_type *type,
0852                   void *(*alloc)(unsigned long sz), bool ng)
0853 {
0854     p4d_t *p4d = p4d_offset(pgd, addr);
0855     unsigned long next;
0856 
0857     do {
0858         next = p4d_addr_end(addr, end);
0859         alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
0860         phys += next - addr;
0861     } while (p4d++, addr = next, addr != end);
0862 }
0863 
0864 #ifndef CONFIG_ARM_LPAE
0865 static void __init create_36bit_mapping(struct mm_struct *mm,
0866                     struct map_desc *md,
0867                     const struct mem_type *type,
0868                     bool ng)
0869 {
0870     unsigned long addr, length, end;
0871     phys_addr_t phys;
0872     pgd_t *pgd;
0873 
0874     addr = md->virtual;
0875     phys = __pfn_to_phys(md->pfn);
0876     length = PAGE_ALIGN(md->length);
0877 
0878     if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
0879         pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
0880                (long long)__pfn_to_phys((u64)md->pfn), addr);
0881         return;
0882     }
0883 
0884     /* N.B. ARMv6 supersections are only defined to work with domain 0.
0885      *  Since domain assignments can in fact be arbitrary, the
0886      *  'domain == 0' check below is required to insure that ARMv6
0887      *  supersections are only allocated for domain 0 regardless
0888      *  of the actual domain assignments in use.
0889      */
0890     if (type->domain) {
0891         pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
0892                (long long)__pfn_to_phys((u64)md->pfn), addr);
0893         return;
0894     }
0895 
0896     if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
0897         pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
0898                (long long)__pfn_to_phys((u64)md->pfn), addr);
0899         return;
0900     }
0901 
0902     /*
0903      * Shift bits [35:32] of address into bits [23:20] of PMD
0904      * (See ARMv6 spec).
0905      */
0906     phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
0907 
0908     pgd = pgd_offset(mm, addr);
0909     end = addr + length;
0910     do {
0911         p4d_t *p4d = p4d_offset(pgd, addr);
0912         pud_t *pud = pud_offset(p4d, addr);
0913         pmd_t *pmd = pmd_offset(pud, addr);
0914         int i;
0915 
0916         for (i = 0; i < 16; i++)
0917             *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
0918                        (ng ? PMD_SECT_nG : 0));
0919 
0920         addr += SUPERSECTION_SIZE;
0921         phys += SUPERSECTION_SIZE;
0922         pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
0923     } while (addr != end);
0924 }
0925 #endif  /* !CONFIG_ARM_LPAE */
0926 
0927 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
0928                     void *(*alloc)(unsigned long sz),
0929                     bool ng)
0930 {
0931     unsigned long addr, length, end;
0932     phys_addr_t phys;
0933     const struct mem_type *type;
0934     pgd_t *pgd;
0935 
0936     type = &mem_types[md->type];
0937 
0938 #ifndef CONFIG_ARM_LPAE
0939     /*
0940      * Catch 36-bit addresses
0941      */
0942     if (md->pfn >= 0x100000) {
0943         create_36bit_mapping(mm, md, type, ng);
0944         return;
0945     }
0946 #endif
0947 
0948     addr = md->virtual & PAGE_MASK;
0949     phys = __pfn_to_phys(md->pfn);
0950     length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
0951 
0952     if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
0953         pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
0954             (long long)__pfn_to_phys(md->pfn), addr);
0955         return;
0956     }
0957 
0958     pgd = pgd_offset(mm, addr);
0959     end = addr + length;
0960     do {
0961         unsigned long next = pgd_addr_end(addr, end);
0962 
0963         alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
0964 
0965         phys += next - addr;
0966         addr = next;
0967     } while (pgd++, addr != end);
0968 }
0969 
0970 /*
0971  * Create the page directory entries and any necessary
0972  * page tables for the mapping specified by `md'.  We
0973  * are able to cope here with varying sizes and address
0974  * offsets, and we take full advantage of sections and
0975  * supersections.
0976  */
0977 static void __init create_mapping(struct map_desc *md)
0978 {
0979     if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
0980         pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
0981             (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
0982         return;
0983     }
0984 
0985     if (md->type == MT_DEVICE &&
0986         md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
0987         (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
0988         pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
0989             (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
0990     }
0991 
0992     __create_mapping(&init_mm, md, early_alloc, false);
0993 }
0994 
0995 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
0996                 bool ng)
0997 {
0998 #ifdef CONFIG_ARM_LPAE
0999     p4d_t *p4d;
1000     pud_t *pud;
1001 
1002     p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
1003     if (WARN_ON(!p4d))
1004         return;
1005     pud = pud_alloc(mm, p4d, md->virtual);
1006     if (WARN_ON(!pud))
1007         return;
1008     pmd_alloc(mm, pud, 0);
1009 #endif
1010     __create_mapping(mm, md, late_alloc, ng);
1011 }
1012 
1013 /*
1014  * Create the architecture specific mappings
1015  */
1016 void __init iotable_init(struct map_desc *io_desc, int nr)
1017 {
1018     struct map_desc *md;
1019     struct vm_struct *vm;
1020     struct static_vm *svm;
1021 
1022     if (!nr)
1023         return;
1024 
1025     svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1026     if (!svm)
1027         panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1028               __func__, sizeof(*svm) * nr, __alignof__(*svm));
1029 
1030     for (md = io_desc; nr; md++, nr--) {
1031         create_mapping(md);
1032 
1033         vm = &svm->vm;
1034         vm->addr = (void *)(md->virtual & PAGE_MASK);
1035         vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1036         vm->phys_addr = __pfn_to_phys(md->pfn);
1037         vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1038         vm->flags |= VM_ARM_MTYPE(md->type);
1039         vm->caller = iotable_init;
1040         add_static_vm_early(svm++);
1041     }
1042 }
1043 
1044 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1045                   void *caller)
1046 {
1047     struct vm_struct *vm;
1048     struct static_vm *svm;
1049 
1050     svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1051     if (!svm)
1052         panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1053               __func__, sizeof(*svm), __alignof__(*svm));
1054 
1055     vm = &svm->vm;
1056     vm->addr = (void *)addr;
1057     vm->size = size;
1058     vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1059     vm->caller = caller;
1060     add_static_vm_early(svm);
1061 }
1062 
1063 #ifndef CONFIG_ARM_LPAE
1064 
1065 /*
1066  * The Linux PMD is made of two consecutive section entries covering 2MB
1067  * (see definition in include/asm/pgtable-2level.h).  However a call to
1068  * create_mapping() may optimize static mappings by using individual
1069  * 1MB section mappings.  This leaves the actual PMD potentially half
1070  * initialized if the top or bottom section entry isn't used, leaving it
1071  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1072  * the virtual space left free by that unused section entry.
1073  *
1074  * Let's avoid the issue by inserting dummy vm entries covering the unused
1075  * PMD halves once the static mappings are in place.
1076  */
1077 
1078 static void __init pmd_empty_section_gap(unsigned long addr)
1079 {
1080     vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1081 }
1082 
1083 static void __init fill_pmd_gaps(void)
1084 {
1085     struct static_vm *svm;
1086     struct vm_struct *vm;
1087     unsigned long addr, next = 0;
1088     pmd_t *pmd;
1089 
1090     list_for_each_entry(svm, &static_vmlist, list) {
1091         vm = &svm->vm;
1092         addr = (unsigned long)vm->addr;
1093         if (addr < next)
1094             continue;
1095 
1096         /*
1097          * Check if this vm starts on an odd section boundary.
1098          * If so and the first section entry for this PMD is free
1099          * then we block the corresponding virtual address.
1100          */
1101         if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1102             pmd = pmd_off_k(addr);
1103             if (pmd_none(*pmd))
1104                 pmd_empty_section_gap(addr & PMD_MASK);
1105         }
1106 
1107         /*
1108          * Then check if this vm ends on an odd section boundary.
1109          * If so and the second section entry for this PMD is empty
1110          * then we block the corresponding virtual address.
1111          */
1112         addr += vm->size;
1113         if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1114             pmd = pmd_off_k(addr) + 1;
1115             if (pmd_none(*pmd))
1116                 pmd_empty_section_gap(addr);
1117         }
1118 
1119         /* no need to look at any vm entry until we hit the next PMD */
1120         next = (addr + PMD_SIZE - 1) & PMD_MASK;
1121     }
1122 }
1123 
1124 #else
1125 #define fill_pmd_gaps() do { } while (0)
1126 #endif
1127 
1128 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1129 static void __init pci_reserve_io(void)
1130 {
1131     struct static_vm *svm;
1132 
1133     svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1134     if (svm)
1135         return;
1136 
1137     vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1138 }
1139 #else
1140 #define pci_reserve_io() do { } while (0)
1141 #endif
1142 
1143 #ifdef CONFIG_DEBUG_LL
1144 void __init debug_ll_io_init(void)
1145 {
1146     struct map_desc map;
1147 
1148     debug_ll_addr(&map.pfn, &map.virtual);
1149     if (!map.pfn || !map.virtual)
1150         return;
1151     map.pfn = __phys_to_pfn(map.pfn);
1152     map.virtual &= PAGE_MASK;
1153     map.length = PAGE_SIZE;
1154     map.type = MT_DEVICE;
1155     iotable_init(&map, 1);
1156 }
1157 #endif
1158 
1159 static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1160 
1161 /*
1162  * vmalloc=size forces the vmalloc area to be exactly 'size'
1163  * bytes. This can be used to increase (or decrease) the vmalloc
1164  * area - the default is 240MiB.
1165  */
1166 static int __init early_vmalloc(char *arg)
1167 {
1168     unsigned long vmalloc_reserve = memparse(arg, NULL);
1169     unsigned long vmalloc_max;
1170 
1171     if (vmalloc_reserve < SZ_16M) {
1172         vmalloc_reserve = SZ_16M;
1173         pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1174             vmalloc_reserve >> 20);
1175     }
1176 
1177     vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1178     if (vmalloc_reserve > vmalloc_max) {
1179         vmalloc_reserve = vmalloc_max;
1180         pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1181             vmalloc_reserve >> 20);
1182     }
1183 
1184     vmalloc_size = vmalloc_reserve;
1185     return 0;
1186 }
1187 early_param("vmalloc", early_vmalloc);
1188 
1189 phys_addr_t arm_lowmem_limit __initdata = 0;
1190 
1191 void __init adjust_lowmem_bounds(void)
1192 {
1193     phys_addr_t block_start, block_end, memblock_limit = 0;
1194     u64 vmalloc_limit, i;
1195     phys_addr_t lowmem_limit = 0;
1196 
1197     /*
1198      * Let's use our own (unoptimized) equivalent of __pa() that is
1199      * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1200      * The result is used as the upper bound on physical memory address
1201      * and may itself be outside the valid range for which phys_addr_t
1202      * and therefore __pa() is defined.
1203      */
1204     vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1205             PAGE_OFFSET + PHYS_OFFSET;
1206 
1207     /*
1208      * The first usable region must be PMD aligned. Mark its start
1209      * as MEMBLOCK_NOMAP if it isn't
1210      */
1211     for_each_mem_range(i, &block_start, &block_end) {
1212         if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1213             phys_addr_t len;
1214 
1215             len = round_up(block_start, PMD_SIZE) - block_start;
1216             memblock_mark_nomap(block_start, len);
1217         }
1218         break;
1219     }
1220 
1221     for_each_mem_range(i, &block_start, &block_end) {
1222         if (block_start < vmalloc_limit) {
1223             if (block_end > lowmem_limit)
1224                 /*
1225                  * Compare as u64 to ensure vmalloc_limit does
1226                  * not get truncated. block_end should always
1227                  * fit in phys_addr_t so there should be no
1228                  * issue with assignment.
1229                  */
1230                 lowmem_limit = min_t(u64,
1231                              vmalloc_limit,
1232                              block_end);
1233 
1234             /*
1235              * Find the first non-pmd-aligned page, and point
1236              * memblock_limit at it. This relies on rounding the
1237              * limit down to be pmd-aligned, which happens at the
1238              * end of this function.
1239              *
1240              * With this algorithm, the start or end of almost any
1241              * bank can be non-pmd-aligned. The only exception is
1242              * that the start of the bank 0 must be section-
1243              * aligned, since otherwise memory would need to be
1244              * allocated when mapping the start of bank 0, which
1245              * occurs before any free memory is mapped.
1246              */
1247             if (!memblock_limit) {
1248                 if (!IS_ALIGNED(block_start, PMD_SIZE))
1249                     memblock_limit = block_start;
1250                 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1251                     memblock_limit = lowmem_limit;
1252             }
1253 
1254         }
1255     }
1256 
1257     arm_lowmem_limit = lowmem_limit;
1258 
1259     high_memory = __va(arm_lowmem_limit - 1) + 1;
1260 
1261     if (!memblock_limit)
1262         memblock_limit = arm_lowmem_limit;
1263 
1264     /*
1265      * Round the memblock limit down to a pmd size.  This
1266      * helps to ensure that we will allocate memory from the
1267      * last full pmd, which should be mapped.
1268      */
1269     memblock_limit = round_down(memblock_limit, PMD_SIZE);
1270 
1271     if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1272         if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1273             phys_addr_t end = memblock_end_of_DRAM();
1274 
1275             pr_notice("Ignoring RAM at %pa-%pa\n",
1276                   &memblock_limit, &end);
1277             pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1278 
1279             memblock_remove(memblock_limit, end - memblock_limit);
1280         }
1281     }
1282 
1283     memblock_set_current_limit(memblock_limit);
1284 }
1285 
1286 static __init void prepare_page_table(void)
1287 {
1288     unsigned long addr;
1289     phys_addr_t end;
1290 
1291     /*
1292      * Clear out all the mappings below the kernel image.
1293      */
1294 #ifdef CONFIG_KASAN
1295     /*
1296      * KASan's shadow memory inserts itself between the TASK_SIZE
1297      * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1298      */
1299     for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1300         pmd_clear(pmd_off_k(addr));
1301     /*
1302      * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1303      * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1304      * are using a thumb-compiled kernel, there there will be 8MB more
1305      * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1306      */
1307     for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1308         pmd_clear(pmd_off_k(addr));
1309 #else
1310     for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1311         pmd_clear(pmd_off_k(addr));
1312 #endif
1313 
1314 #ifdef CONFIG_XIP_KERNEL
1315     /* The XIP kernel is mapped in the module area -- skip over it */
1316     addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1317 #endif
1318     for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1319         pmd_clear(pmd_off_k(addr));
1320 
1321     /*
1322      * Find the end of the first block of lowmem.
1323      */
1324     end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1325     if (end >= arm_lowmem_limit)
1326         end = arm_lowmem_limit;
1327 
1328     /*
1329      * Clear out all the kernel space mappings, except for the first
1330      * memory bank, up to the vmalloc region.
1331      */
1332     for (addr = __phys_to_virt(end);
1333          addr < VMALLOC_START; addr += PMD_SIZE)
1334         pmd_clear(pmd_off_k(addr));
1335 }
1336 
1337 #ifdef CONFIG_ARM_LPAE
1338 /* the first page is reserved for pgd */
1339 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1340                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1341 #else
1342 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1343 #endif
1344 
1345 /*
1346  * Reserve the special regions of memory
1347  */
1348 void __init arm_mm_memblock_reserve(void)
1349 {
1350     /*
1351      * Reserve the page tables.  These are already in use,
1352      * and can only be in node 0.
1353      */
1354     memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1355 
1356 #ifdef CONFIG_SA1111
1357     /*
1358      * Because of the SA1111 DMA bug, we want to preserve our
1359      * precious DMA-able memory...
1360      */
1361     memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1362 #endif
1363 }
1364 
1365 /*
1366  * Set up the device mappings.  Since we clear out the page tables for all
1367  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1368  * device mappings.  This means earlycon can be used to debug this function
1369  * Any other function or debugging method which may touch any device _will_
1370  * crash the kernel.
1371  */
1372 static void __init devicemaps_init(const struct machine_desc *mdesc)
1373 {
1374     struct map_desc map;
1375     unsigned long addr;
1376     void *vectors;
1377 
1378     /*
1379      * Allocate the vector page early.
1380      */
1381     vectors = early_alloc(PAGE_SIZE * 2);
1382 
1383     early_trap_init(vectors);
1384 
1385     /*
1386      * Clear page table except top pmd used by early fixmaps
1387      */
1388     for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1389         pmd_clear(pmd_off_k(addr));
1390 
1391     if (__atags_pointer) {
1392         /* create a read-only mapping of the device tree */
1393         map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1394         map.virtual = FDT_FIXED_BASE;
1395         map.length = FDT_FIXED_SIZE;
1396         map.type = MT_MEMORY_RO;
1397         create_mapping(&map);
1398     }
1399 
1400     /*
1401      * Map the kernel if it is XIP.
1402      * It is always first in the modulearea.
1403      */
1404 #ifdef CONFIG_XIP_KERNEL
1405     map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1406     map.virtual = MODULES_VADDR;
1407     map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1408     map.type = MT_ROM;
1409     create_mapping(&map);
1410 #endif
1411 
1412     /*
1413      * Map the cache flushing regions.
1414      */
1415 #ifdef FLUSH_BASE
1416     map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1417     map.virtual = FLUSH_BASE;
1418     map.length = SZ_1M;
1419     map.type = MT_CACHECLEAN;
1420     create_mapping(&map);
1421 #endif
1422 #ifdef FLUSH_BASE_MINICACHE
1423     map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1424     map.virtual = FLUSH_BASE_MINICACHE;
1425     map.length = SZ_1M;
1426     map.type = MT_MINICLEAN;
1427     create_mapping(&map);
1428 #endif
1429 
1430     /*
1431      * Create a mapping for the machine vectors at the high-vectors
1432      * location (0xffff0000).  If we aren't using high-vectors, also
1433      * create a mapping at the low-vectors virtual address.
1434      */
1435     map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1436     map.virtual = 0xffff0000;
1437     map.length = PAGE_SIZE;
1438 #ifdef CONFIG_KUSER_HELPERS
1439     map.type = MT_HIGH_VECTORS;
1440 #else
1441     map.type = MT_LOW_VECTORS;
1442 #endif
1443     create_mapping(&map);
1444 
1445     if (!vectors_high()) {
1446         map.virtual = 0;
1447         map.length = PAGE_SIZE * 2;
1448         map.type = MT_LOW_VECTORS;
1449         create_mapping(&map);
1450     }
1451 
1452     /* Now create a kernel read-only mapping */
1453     map.pfn += 1;
1454     map.virtual = 0xffff0000 + PAGE_SIZE;
1455     map.length = PAGE_SIZE;
1456     map.type = MT_LOW_VECTORS;
1457     create_mapping(&map);
1458 
1459     /*
1460      * Ask the machine support to map in the statically mapped devices.
1461      */
1462     if (mdesc->map_io)
1463         mdesc->map_io();
1464     else
1465         debug_ll_io_init();
1466     fill_pmd_gaps();
1467 
1468     /* Reserve fixed i/o space in VMALLOC region */
1469     pci_reserve_io();
1470 
1471     /*
1472      * Finally flush the caches and tlb to ensure that we're in a
1473      * consistent state wrt the writebuffer.  This also ensures that
1474      * any write-allocated cache lines in the vector page are written
1475      * back.  After this point, we can start to touch devices again.
1476      */
1477     local_flush_tlb_all();
1478     flush_cache_all();
1479 
1480     /* Enable asynchronous aborts */
1481     early_abt_enable();
1482 }
1483 
1484 static void __init kmap_init(void)
1485 {
1486 #ifdef CONFIG_HIGHMEM
1487     pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1488         PKMAP_BASE, _PAGE_KERNEL_TABLE);
1489 #endif
1490 
1491     early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1492             _PAGE_KERNEL_TABLE);
1493 }
1494 
1495 static void __init map_lowmem(void)
1496 {
1497     phys_addr_t start, end;
1498     u64 i;
1499 
1500     /* Map all the lowmem memory banks. */
1501     for_each_mem_range(i, &start, &end) {
1502         struct map_desc map;
1503 
1504         pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1505              (long long)start, (long long)end);
1506         if (end > arm_lowmem_limit)
1507             end = arm_lowmem_limit;
1508         if (start >= end)
1509             break;
1510 
1511         /*
1512          * If our kernel image is in the VMALLOC area we need to remove
1513          * the kernel physical memory from lowmem since the kernel will
1514          * be mapped separately.
1515          *
1516          * The kernel will typically be at the very start of lowmem,
1517          * but any placement relative to memory ranges is possible.
1518          *
1519          * If the memblock contains the kernel, we have to chisel out
1520          * the kernel memory from it and map each part separately. We
1521          * get 6 different theoretical cases:
1522          *
1523          *                            +--------+ +--------+
1524          *  +-- start --+  +--------+ | Kernel | | Kernel |
1525          *  |           |  | Kernel | | case 2 | | case 5 |
1526          *  |           |  | case 1 | +--------+ |        | +--------+
1527          *  |  Memory   |  +--------+            |        | | Kernel |
1528          *  |  range    |  +--------+            |        | | case 6 |
1529          *  |           |  | Kernel | +--------+ |        | +--------+
1530          *  |           |  | case 3 | | Kernel | |        |
1531          *  +-- end ----+  +--------+ | case 4 | |        |
1532          *                            +--------+ +--------+
1533          */
1534 
1535         /* Case 5: kernel covers range, don't map anything, should be rare */
1536         if ((start > kernel_sec_start) && (end < kernel_sec_end))
1537             break;
1538 
1539         /* Cases where the kernel is starting inside the range */
1540         if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1541             /* Case 6: kernel is embedded in the range, we need two mappings */
1542             if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1543                 /* Map memory below the kernel */
1544                 map.pfn = __phys_to_pfn(start);
1545                 map.virtual = __phys_to_virt(start);
1546                 map.length = kernel_sec_start - start;
1547                 map.type = MT_MEMORY_RW;
1548                 create_mapping(&map);
1549                 /* Map memory above the kernel */
1550                 map.pfn = __phys_to_pfn(kernel_sec_end);
1551                 map.virtual = __phys_to_virt(kernel_sec_end);
1552                 map.length = end - kernel_sec_end;
1553                 map.type = MT_MEMORY_RW;
1554                 create_mapping(&map);
1555                 break;
1556             }
1557             /* Case 1: kernel and range start at the same address, should be common */
1558             if (kernel_sec_start == start)
1559                 start = kernel_sec_end;
1560             /* Case 3: kernel and range end at the same address, should be rare */
1561             if (kernel_sec_end == end)
1562                 end = kernel_sec_start;
1563         } else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1564             /* Case 2: kernel ends inside range, starts below it */
1565             start = kernel_sec_end;
1566         } else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1567             /* Case 4: kernel starts inside range, ends above it */
1568             end = kernel_sec_start;
1569         }
1570         map.pfn = __phys_to_pfn(start);
1571         map.virtual = __phys_to_virt(start);
1572         map.length = end - start;
1573         map.type = MT_MEMORY_RW;
1574         create_mapping(&map);
1575     }
1576 }
1577 
1578 static void __init map_kernel(void)
1579 {
1580     /*
1581      * We use the well known kernel section start and end and split the area in the
1582      * middle like this:
1583      *  .                .
1584      *  | RW memory      |
1585      *  +----------------+ kernel_x_start
1586      *  | Executable     |
1587      *  | kernel memory  |
1588      *  +----------------+ kernel_x_end / kernel_nx_start
1589      *  | Non-executable |
1590      *  | kernel memory  |
1591      *  +----------------+ kernel_nx_end
1592      *  | RW memory      |
1593      *  .                .
1594      *
1595      * Notice that we are dealing with section sized mappings here so all of this
1596      * will be bumped to the closest section boundary. This means that some of the
1597      * non-executable part of the kernel memory is actually mapped as executable.
1598      * This will only persist until we turn on proper memory management later on
1599      * and we remap the whole kernel with page granularity.
1600      */
1601     phys_addr_t kernel_x_start = kernel_sec_start;
1602     phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1603     phys_addr_t kernel_nx_start = kernel_x_end;
1604     phys_addr_t kernel_nx_end = kernel_sec_end;
1605     struct map_desc map;
1606 
1607     map.pfn = __phys_to_pfn(kernel_x_start);
1608     map.virtual = __phys_to_virt(kernel_x_start);
1609     map.length = kernel_x_end - kernel_x_start;
1610     map.type = MT_MEMORY_RWX;
1611     create_mapping(&map);
1612 
1613     /* If the nx part is small it may end up covered by the tail of the RWX section */
1614     if (kernel_x_end == kernel_nx_end)
1615         return;
1616 
1617     map.pfn = __phys_to_pfn(kernel_nx_start);
1618     map.virtual = __phys_to_virt(kernel_nx_start);
1619     map.length = kernel_nx_end - kernel_nx_start;
1620     map.type = MT_MEMORY_RW;
1621     create_mapping(&map);
1622 }
1623 
1624 #ifdef CONFIG_ARM_PV_FIXUP
1625 typedef void pgtables_remap(long long offset, unsigned long pgd);
1626 pgtables_remap lpae_pgtables_remap_asm;
1627 
1628 /*
1629  * early_paging_init() recreates boot time page table setup, allowing machines
1630  * to switch over to a high (>4G) address space on LPAE systems
1631  */
1632 static void __init early_paging_init(const struct machine_desc *mdesc)
1633 {
1634     pgtables_remap *lpae_pgtables_remap;
1635     unsigned long pa_pgd;
1636     unsigned int cr, ttbcr;
1637     long long offset;
1638 
1639     if (!mdesc->pv_fixup)
1640         return;
1641 
1642     offset = mdesc->pv_fixup();
1643     if (offset == 0)
1644         return;
1645 
1646     /*
1647      * Offset the kernel section physical offsets so that the kernel
1648      * mapping will work out later on.
1649      */
1650     kernel_sec_start += offset;
1651     kernel_sec_end += offset;
1652 
1653     /*
1654      * Get the address of the remap function in the 1:1 identity
1655      * mapping setup by the early page table assembly code.  We
1656      * must get this prior to the pv update.  The following barrier
1657      * ensures that this is complete before we fixup any P:V offsets.
1658      */
1659     lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1660     pa_pgd = __pa(swapper_pg_dir);
1661     barrier();
1662 
1663     pr_info("Switching physical address space to 0x%08llx\n",
1664         (u64)PHYS_OFFSET + offset);
1665 
1666     /* Re-set the phys pfn offset, and the pv offset */
1667     __pv_offset += offset;
1668     __pv_phys_pfn_offset += PFN_DOWN(offset);
1669 
1670     /* Run the patch stub to update the constants */
1671     fixup_pv_table(&__pv_table_begin,
1672         (&__pv_table_end - &__pv_table_begin) << 2);
1673 
1674     /*
1675      * We changing not only the virtual to physical mapping, but also
1676      * the physical addresses used to access memory.  We need to flush
1677      * all levels of cache in the system with caching disabled to
1678      * ensure that all data is written back, and nothing is prefetched
1679      * into the caches.  We also need to prevent the TLB walkers
1680      * allocating into the caches too.  Note that this is ARMv7 LPAE
1681      * specific.
1682      */
1683     cr = get_cr();
1684     set_cr(cr & ~(CR_I | CR_C));
1685     asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1686     asm volatile("mcr p15, 0, %0, c2, c0, 2"
1687         : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1688     flush_cache_all();
1689 
1690     /*
1691      * Fixup the page tables - this must be in the idmap region as
1692      * we need to disable the MMU to do this safely, and hence it
1693      * needs to be assembly.  It's fairly simple, as we're using the
1694      * temporary tables setup by the initial assembly code.
1695      */
1696     lpae_pgtables_remap(offset, pa_pgd);
1697 
1698     /* Re-enable the caches and cacheable TLB walks */
1699     asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1700     set_cr(cr);
1701 }
1702 
1703 #else
1704 
1705 static void __init early_paging_init(const struct machine_desc *mdesc)
1706 {
1707     long long offset;
1708 
1709     if (!mdesc->pv_fixup)
1710         return;
1711 
1712     offset = mdesc->pv_fixup();
1713     if (offset == 0)
1714         return;
1715 
1716     pr_crit("Physical address space modification is only to support Keystone2.\n");
1717     pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1718     pr_crit("feature. Your kernel may crash now, have a good day.\n");
1719     add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1720 }
1721 
1722 #endif
1723 
1724 static void __init early_fixmap_shutdown(void)
1725 {
1726     int i;
1727     unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1728 
1729     pte_offset_fixmap = pte_offset_late_fixmap;
1730     pmd_clear(fixmap_pmd(va));
1731     local_flush_tlb_kernel_page(va);
1732 
1733     for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1734         pte_t *pte;
1735         struct map_desc map;
1736 
1737         map.virtual = fix_to_virt(i);
1738         pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1739 
1740         /* Only i/o device mappings are supported ATM */
1741         if (pte_none(*pte) ||
1742             (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1743             continue;
1744 
1745         map.pfn = pte_pfn(*pte);
1746         map.type = MT_DEVICE;
1747         map.length = PAGE_SIZE;
1748 
1749         create_mapping(&map);
1750     }
1751 }
1752 
1753 /*
1754  * paging_init() sets up the page tables, initialises the zone memory
1755  * maps, and sets up the zero page, bad page and bad page tables.
1756  */
1757 void __init paging_init(const struct machine_desc *mdesc)
1758 {
1759     void *zero_page;
1760 
1761     pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1762          kernel_sec_start, kernel_sec_end);
1763 
1764     prepare_page_table();
1765     map_lowmem();
1766     memblock_set_current_limit(arm_lowmem_limit);
1767     pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1768     /*
1769      * After this point early_alloc(), i.e. the memblock allocator, can
1770      * be used
1771      */
1772     map_kernel();
1773     dma_contiguous_remap();
1774     early_fixmap_shutdown();
1775     devicemaps_init(mdesc);
1776     kmap_init();
1777     tcm_init();
1778 
1779     top_pmd = pmd_off_k(0xffff0000);
1780 
1781     /* allocate the zero page. */
1782     zero_page = early_alloc(PAGE_SIZE);
1783 
1784     bootmem_init();
1785 
1786     empty_zero_page = virt_to_page(zero_page);
1787     __flush_dcache_page(NULL, empty_zero_page);
1788 }
1789 
1790 void __init early_mm_init(const struct machine_desc *mdesc)
1791 {
1792     build_mem_type_table();
1793     early_paging_init(mdesc);
1794 }
1795 
1796 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1797                   pte_t *ptep, pte_t pteval)
1798 {
1799     unsigned long ext = 0;
1800 
1801     if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1802         if (!pte_special(pteval))
1803             __sync_icache_dcache(pteval);
1804         ext |= PTE_EXT_NG;
1805     }
1806 
1807     set_pte_ext(ptep, pteval, ext);
1808 }