0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/sched.h>
0009 #include <linux/kernel.h>
0010 #include <linux/mm.h>
0011 #include <linux/bitops.h>
0012 #include <linux/vmalloc.h>
0013 #include <linux/init.h>
0014 #include <linux/pagemap.h>
0015 #include <linux/gfp.h>
0016
0017 #include <asm/bugs.h>
0018 #include <asm/cacheflush.h>
0019 #include <asm/cachetype.h>
0020 #include <asm/tlbflush.h>
0021
0022 #include "mm.h"
0023
0024 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
0025
0026 #if __LINUX_ARM_ARCH__ < 6
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
0037 unsigned long pfn, pte_t *ptep)
0038 {
0039 pte_t entry = *ptep;
0040 int ret;
0041
0042
0043
0044
0045 ret = pte_present(entry);
0046
0047
0048
0049
0050
0051 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
0052 flush_cache_page(vma, address, pfn);
0053 outer_flush_range((pfn << PAGE_SHIFT),
0054 (pfn << PAGE_SHIFT) + PAGE_SIZE);
0055 pte_val(entry) &= ~L_PTE_MT_MASK;
0056 pte_val(entry) |= shared_pte_mask;
0057 set_pte_at(vma->vm_mm, address, ptep, entry);
0058 flush_tlb_page(vma, address);
0059 }
0060
0061 return ret;
0062 }
0063
0064 #if USE_SPLIT_PTE_PTLOCKS
0065
0066
0067
0068
0069
0070 static inline void do_pte_lock(spinlock_t *ptl)
0071 {
0072
0073
0074
0075
0076 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
0077 }
0078
0079 static inline void do_pte_unlock(spinlock_t *ptl)
0080 {
0081 spin_unlock(ptl);
0082 }
0083 #else
0084 static inline void do_pte_lock(spinlock_t *ptl) {}
0085 static inline void do_pte_unlock(spinlock_t *ptl) {}
0086 #endif
0087
0088 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
0089 unsigned long pfn)
0090 {
0091 spinlock_t *ptl;
0092 pgd_t *pgd;
0093 p4d_t *p4d;
0094 pud_t *pud;
0095 pmd_t *pmd;
0096 pte_t *pte;
0097 int ret;
0098
0099 pgd = pgd_offset(vma->vm_mm, address);
0100 if (pgd_none_or_clear_bad(pgd))
0101 return 0;
0102
0103 p4d = p4d_offset(pgd, address);
0104 if (p4d_none_or_clear_bad(p4d))
0105 return 0;
0106
0107 pud = pud_offset(p4d, address);
0108 if (pud_none_or_clear_bad(pud))
0109 return 0;
0110
0111 pmd = pmd_offset(pud, address);
0112 if (pmd_none_or_clear_bad(pmd))
0113 return 0;
0114
0115
0116
0117
0118
0119
0120 ptl = pte_lockptr(vma->vm_mm, pmd);
0121 pte = pte_offset_map(pmd, address);
0122 do_pte_lock(ptl);
0123
0124 ret = do_adjust_pte(vma, address, pfn, pte);
0125
0126 do_pte_unlock(ptl);
0127 pte_unmap(pte);
0128
0129 return ret;
0130 }
0131
0132 static void
0133 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
0134 unsigned long addr, pte_t *ptep, unsigned long pfn)
0135 {
0136 struct mm_struct *mm = vma->vm_mm;
0137 struct vm_area_struct *mpnt;
0138 unsigned long offset;
0139 pgoff_t pgoff;
0140 int aliases = 0;
0141
0142 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
0143
0144
0145
0146
0147
0148
0149 flush_dcache_mmap_lock(mapping);
0150 vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
0151
0152
0153
0154
0155
0156 if (mpnt->vm_mm != mm || mpnt == vma)
0157 continue;
0158 if (!(mpnt->vm_flags & VM_MAYSHARE))
0159 continue;
0160 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
0161 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
0162 }
0163 flush_dcache_mmap_unlock(mapping);
0164 if (aliases)
0165 do_adjust_pte(vma, addr, pfn, ptep);
0166 }
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
0182 pte_t *ptep)
0183 {
0184 unsigned long pfn = pte_pfn(*ptep);
0185 struct address_space *mapping;
0186 struct page *page;
0187
0188 if (!pfn_valid(pfn))
0189 return;
0190
0191
0192
0193
0194
0195 page = pfn_to_page(pfn);
0196 if (page == ZERO_PAGE(0))
0197 return;
0198
0199 mapping = page_mapping_file(page);
0200 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
0201 __flush_dcache_page(mapping, page);
0202 if (mapping) {
0203 if (cache_is_vivt())
0204 make_coherent(mapping, vma, addr, ptep, pfn);
0205 else if (vma->vm_flags & VM_EXEC)
0206 __flush_icache_all();
0207 }
0208 }
0209 #endif
0210
0211
0212
0213
0214
0215
0216
0217 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
0218 {
0219 register unsigned long zero = 0, one = 1, val;
0220
0221 local_irq_disable();
0222 mb();
0223 *p1 = one;
0224 mb();
0225 *p2 = zero;
0226 mb();
0227 val = *p1;
0228 mb();
0229 local_irq_enable();
0230 return val != zero;
0231 }
0232
0233 void __init check_writebuffer_bugs(void)
0234 {
0235 struct page *page;
0236 const char *reason;
0237 unsigned long v = 1;
0238
0239 pr_info("CPU: Testing write buffer coherency: ");
0240
0241 page = alloc_page(GFP_KERNEL);
0242 if (page) {
0243 unsigned long *p1, *p2;
0244 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
0245 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
0246
0247 p1 = vmap(&page, 1, VM_IOREMAP, prot);
0248 p2 = vmap(&page, 1, VM_IOREMAP, prot);
0249
0250 if (p1 && p2) {
0251 v = check_writebuffer(p1, p2);
0252 reason = "enabling work-around";
0253 } else {
0254 reason = "unable to map memory\n";
0255 }
0256
0257 vunmap(p1);
0258 vunmap(p2);
0259 put_page(page);
0260 } else {
0261 reason = "unable to grab page\n";
0262 }
0263
0264 if (v) {
0265 pr_cont("failed, %s\n", reason);
0266 shared_pte_mask = L_PTE_MT_UNCACHED;
0267 } else {
0268 pr_cont("ok\n");
0269 }
0270 }