![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0-only */ 0002 /* 0003 * arch/arm/include/asm/pgtable-2level.h 0004 * 0005 * Copyright (C) 1995-2002 Russell King 0006 */ 0007 #ifndef _ASM_PGTABLE_2LEVEL_H 0008 #define _ASM_PGTABLE_2LEVEL_H 0009 0010 #define __PAGETABLE_PMD_FOLDED 1 0011 0012 /* 0013 * Hardware-wise, we have a two level page table structure, where the first 0014 * level has 4096 entries, and the second level has 256 entries. Each entry 0015 * is one 32-bit word. Most of the bits in the second level entry are used 0016 * by hardware, and there aren't any "accessed" and "dirty" bits. 0017 * 0018 * Linux on the other hand has a three level page table structure, which can 0019 * be wrapped to fit a two level page table structure easily - using the PGD 0020 * and PTE only. However, Linux also expects one "PTE" table per page, and 0021 * at least a "dirty" bit. 0022 * 0023 * Therefore, we tweak the implementation slightly - we tell Linux that we 0024 * have 2048 entries in the first level, each of which is 8 bytes (iow, two 0025 * hardware pointers to the second level.) The second level contains two 0026 * hardware PTE tables arranged contiguously, preceded by Linux versions 0027 * which contain the state information Linux needs. We, therefore, end up 0028 * with 512 entries in the "PTE" level. 0029 * 0030 * This leads to the page tables having the following layout: 0031 * 0032 * pgd pte 0033 * | | 0034 * +--------+ 0035 * | | +------------+ +0 0036 * +- - - - + | Linux pt 0 | 0037 * | | +------------+ +1024 0038 * +--------+ +0 | Linux pt 1 | 0039 * | |-----> +------------+ +2048 0040 * +- - - - + +4 | h/w pt 0 | 0041 * | |-----> +------------+ +3072 0042 * +--------+ +8 | h/w pt 1 | 0043 * | | +------------+ +4096 0044 * 0045 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and 0046 * PTE_xxx for definitions of bits appearing in the "h/w pt". 0047 * 0048 * PMD_xxx definitions refer to bits in the first level page table. 0049 * 0050 * The "dirty" bit is emulated by only granting hardware write permission 0051 * iff the page is marked "writable" and "dirty" in the Linux PTE. This 0052 * means that a write to a clean page will cause a permission fault, and 0053 * the Linux MM layer will mark the page dirty via handle_pte_fault(). 0054 * For the hardware to notice the permission change, the TLB entry must 0055 * be flushed, and ptep_set_access_flags() does that for us. 0056 * 0057 * The "accessed" or "young" bit is emulated by a similar method; we only 0058 * allow accesses to the page if the "young" bit is set. Accesses to the 0059 * page will cause a fault, and handle_pte_fault() will set the young bit 0060 * for us as long as the page is marked present in the corresponding Linux 0061 * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is 0062 * up to date. 0063 * 0064 * However, when the "young" bit is cleared, we deny access to the page 0065 * by clearing the hardware PTE. Currently Linux does not flush the TLB 0066 * for us in this case, which means the TLB will retain the transation 0067 * until either the TLB entry is evicted under pressure, or a context 0068 * switch which changes the user space mapping occurs. 0069 */ 0070 #define PTRS_PER_PTE 512 0071 #define PTRS_PER_PMD 1 0072 #define PTRS_PER_PGD 2048 0073 0074 #define PTE_HWTABLE_PTRS (PTRS_PER_PTE) 0075 #define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t)) 0076 #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32)) 0077 0078 #define MAX_POSSIBLE_PHYSMEM_BITS 32 0079 0080 /* 0081 * PMD_SHIFT determines the size of the area a second-level page table can map 0082 * PGDIR_SHIFT determines what a third-level page table entry can map 0083 */ 0084 #define PMD_SHIFT 21 0085 #define PGDIR_SHIFT 21 0086 0087 #define PMD_SIZE (1UL << PMD_SHIFT) 0088 #define PMD_MASK (~(PMD_SIZE-1)) 0089 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 0090 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 0091 0092 /* 0093 * section address mask and size definitions. 0094 */ 0095 #define SECTION_SHIFT 20 0096 #define SECTION_SIZE (1UL << SECTION_SHIFT) 0097 #define SECTION_MASK (~(SECTION_SIZE-1)) 0098 0099 /* 0100 * ARMv6 supersection address mask and size definitions. 0101 */ 0102 #define SUPERSECTION_SHIFT 24 0103 #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT) 0104 #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1)) 0105 0106 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 0107 0108 /* 0109 * "Linux" PTE definitions. 0110 * 0111 * We keep two sets of PTEs - the hardware and the linux version. 0112 * This allows greater flexibility in the way we map the Linux bits 0113 * onto the hardware tables, and allows us to have YOUNG and DIRTY 0114 * bits. 0115 * 0116 * The PTE table pointer refers to the hardware entries; the "Linux" 0117 * entries are stored 1024 bytes below. 0118 */ 0119 #define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */ 0120 #define L_PTE_PRESENT (_AT(pteval_t, 1) << 0) 0121 #define L_PTE_YOUNG (_AT(pteval_t, 1) << 1) 0122 #define L_PTE_DIRTY (_AT(pteval_t, 1) << 6) 0123 #define L_PTE_RDONLY (_AT(pteval_t, 1) << 7) 0124 #define L_PTE_USER (_AT(pteval_t, 1) << 8) 0125 #define L_PTE_XN (_AT(pteval_t, 1) << 9) 0126 #define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */ 0127 #define L_PTE_NONE (_AT(pteval_t, 1) << 11) 0128 0129 /* 0130 * These are the memory types, defined to be compatible with 0131 * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B 0132 * ARMv6+ without TEX remapping, they are a table index. 0133 * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B 0134 * 0135 * MT type Pre-ARMv6 ARMv6+ type / cacheable status 0136 * UNCACHED Uncached Strongly ordered 0137 * BUFFERABLE Bufferable Normal memory / non-cacheable 0138 * WRITETHROUGH Writethrough Normal memory / write through 0139 * WRITEBACK Writeback Normal memory / write back, read alloc 0140 * MINICACHE Minicache N/A 0141 * WRITEALLOC Writeback Normal memory / write back, write alloc 0142 * DEV_SHARED Uncached Device memory (shared) 0143 * DEV_NONSHARED Uncached Device memory (non-shared) 0144 * DEV_WC Bufferable Normal memory / non-cacheable 0145 * DEV_CACHED Writeback Normal memory / write back, read alloc 0146 * VECTORS Variable Normal memory / variable 0147 * 0148 * All normal memory mappings have the following properties: 0149 * - reads can be repeated with no side effects 0150 * - repeated reads return the last value written 0151 * - reads can fetch additional locations without side effects 0152 * - writes can be repeated (in certain cases) with no side effects 0153 * - writes can be merged before accessing the target 0154 * - unaligned accesses can be supported 0155 * 0156 * All device mappings have the following properties: 0157 * - no access speculation 0158 * - no repetition (eg, on return from an exception) 0159 * - number, order and size of accesses are maintained 0160 * - unaligned accesses are "unpredictable" 0161 */ 0162 #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */ 0163 #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */ 0164 #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */ 0165 #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */ 0166 #define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */ 0167 #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */ 0168 #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */ 0169 #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */ 0170 #define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */ 0171 #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */ 0172 #define L_PTE_MT_VECTORS (_AT(pteval_t, 0x0f) << 2) /* 1111 */ 0173 #define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2) 0174 0175 #ifndef __ASSEMBLY__ 0176 0177 /* 0178 * The "pud_xxx()" functions here are trivial when the pmd is folded into 0179 * the pud: the pud entry is never bad, always exists, and can't be set or 0180 * cleared. 0181 */ 0182 static inline int pud_none(pud_t pud) 0183 { 0184 return 0; 0185 } 0186 0187 static inline int pud_bad(pud_t pud) 0188 { 0189 return 0; 0190 } 0191 0192 static inline int pud_present(pud_t pud) 0193 { 0194 return 1; 0195 } 0196 0197 static inline void pud_clear(pud_t *pudp) 0198 { 0199 } 0200 0201 static inline void set_pud(pud_t *pudp, pud_t pud) 0202 { 0203 } 0204 0205 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr) 0206 { 0207 return (pmd_t *)pud; 0208 } 0209 #define pmd_offset pmd_offset 0210 0211 #define pmd_pfn(pmd) (__phys_to_pfn(pmd_val(pmd) & PHYS_MASK)) 0212 0213 #define pmd_large(pmd) (pmd_val(pmd) & 2) 0214 #define pmd_leaf(pmd) (pmd_val(pmd) & 2) 0215 #define pmd_bad(pmd) (pmd_val(pmd) & 2) 0216 #define pmd_present(pmd) (pmd_val(pmd)) 0217 0218 #define copy_pmd(pmdpd,pmdps) \ 0219 do { \ 0220 pmdpd[0] = pmdps[0]; \ 0221 pmdpd[1] = pmdps[1]; \ 0222 flush_pmd_entry(pmdpd); \ 0223 } while (0) 0224 0225 #define pmd_clear(pmdp) \ 0226 do { \ 0227 pmdp[0] = __pmd(0); \ 0228 pmdp[1] = __pmd(0); \ 0229 clean_pmd_entry(pmdp); \ 0230 } while (0) 0231 0232 /* we don't need complex calculations here as the pmd is folded into the pgd */ 0233 #define pmd_addr_end(addr,end) (end) 0234 0235 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext) 0236 0237 /* 0238 * We don't have huge page support for short descriptors, for the moment 0239 * define empty stubs for use by pin_page_for_write. 0240 */ 0241 #define pmd_hugewillfault(pmd) (0) 0242 #define pmd_thp_or_huge(pmd) (0) 0243 0244 #endif /* __ASSEMBLY__ */ 0245 0246 #endif /* _ASM_PGTABLE_2LEVEL_H */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |