0001 .. SPDX-License-Identifier: GPL-2.0
0002 .. include:: <isonum.txt>
0003
0004 ===============================
0005 Universal TUN/TAP device driver
0006 ===============================
0007
0008 Copyright |copy| 1999-2000 Maxim Krasnyansky <max_mk@yahoo.com>
0009
0010 Linux, Solaris drivers
0011 Copyright |copy| 1999-2000 Maxim Krasnyansky <max_mk@yahoo.com>
0012
0013 FreeBSD TAP driver
0014 Copyright |copy| 1999-2000 Maksim Yevmenkin <m_evmenkin@yahoo.com>
0015
0016 Revision of this document 2002 by Florian Thiel <florian.thiel@gmx.net>
0017
0018 1. Description
0019 ==============
0020
0021 TUN/TAP provides packet reception and transmission for user space programs.
0022 It can be seen as a simple Point-to-Point or Ethernet device, which,
0023 instead of receiving packets from physical media, receives them from
0024 user space program and instead of sending packets via physical media
0025 writes them to the user space program.
0026
0027 In order to use the driver a program has to open /dev/net/tun and issue a
0028 corresponding ioctl() to register a network device with the kernel. A network
0029 device will appear as tunXX or tapXX, depending on the options chosen. When
0030 the program closes the file descriptor, the network device and all
0031 corresponding routes will disappear.
0032
0033 Depending on the type of device chosen the userspace program has to read/write
0034 IP packets (with tun) or ethernet frames (with tap). Which one is being used
0035 depends on the flags given with the ioctl().
0036
0037 The package from http://vtun.sourceforge.net/tun contains two simple examples
0038 for how to use tun and tap devices. Both programs work like a bridge between
0039 two network interfaces.
0040 br_select.c - bridge based on select system call.
0041 br_sigio.c - bridge based on async io and SIGIO signal.
0042 However, the best example is VTun http://vtun.sourceforge.net :))
0043
0044 2. Configuration
0045 ================
0046
0047 Create device node::
0048
0049 mkdir /dev/net (if it doesn't exist already)
0050 mknod /dev/net/tun c 10 200
0051
0052 Set permissions::
0053
0054 e.g. chmod 0666 /dev/net/tun
0055
0056 There's no harm in allowing the device to be accessible by non-root users,
0057 since CAP_NET_ADMIN is required for creating network devices or for
0058 connecting to network devices which aren't owned by the user in question.
0059 If you want to create persistent devices and give ownership of them to
0060 unprivileged users, then you need the /dev/net/tun device to be usable by
0061 those users.
0062
0063 Driver module autoloading
0064
0065 Make sure that "Kernel module loader" - module auto-loading
0066 support is enabled in your kernel. The kernel should load it on
0067 first access.
0068
0069 Manual loading
0070
0071 insert the module by hand::
0072
0073 modprobe tun
0074
0075 If you do it the latter way, you have to load the module every time you
0076 need it, if you do it the other way it will be automatically loaded when
0077 /dev/net/tun is being opened.
0078
0079 3. Program interface
0080 ====================
0081
0082 3.1 Network device allocation
0083 -----------------------------
0084
0085 ``char *dev`` should be the name of the device with a format string (e.g.
0086 "tun%d"), but (as far as I can see) this can be any valid network device name.
0087 Note that the character pointer becomes overwritten with the real device name
0088 (e.g. "tun0")::
0089
0090 #include <linux/if.h>
0091 #include <linux/if_tun.h>
0092
0093 int tun_alloc(char *dev)
0094 {
0095 struct ifreq ifr;
0096 int fd, err;
0097
0098 if( (fd = open("/dev/net/tun", O_RDWR)) < 0 )
0099 return tun_alloc_old(dev);
0100
0101 memset(&ifr, 0, sizeof(ifr));
0102
0103 /* Flags: IFF_TUN - TUN device (no Ethernet headers)
0104 * IFF_TAP - TAP device
0105 *
0106 * IFF_NO_PI - Do not provide packet information
0107 */
0108 ifr.ifr_flags = IFF_TUN;
0109 if( *dev )
0110 strscpy_pad(ifr.ifr_name, dev, IFNAMSIZ);
0111
0112 if( (err = ioctl(fd, TUNSETIFF, (void *) &ifr)) < 0 ){
0113 close(fd);
0114 return err;
0115 }
0116 strcpy(dev, ifr.ifr_name);
0117 return fd;
0118 }
0119
0120 3.2 Frame format
0121 ----------------
0122
0123 If flag IFF_NO_PI is not set each frame format is::
0124
0125 Flags [2 bytes]
0126 Proto [2 bytes]
0127 Raw protocol(IP, IPv6, etc) frame.
0128
0129 3.3 Multiqueue tuntap interface
0130 -------------------------------
0131
0132 From version 3.8, Linux supports multiqueue tuntap which can uses multiple
0133 file descriptors (queues) to parallelize packets sending or receiving. The
0134 device allocation is the same as before, and if user wants to create multiple
0135 queues, TUNSETIFF with the same device name must be called many times with
0136 IFF_MULTI_QUEUE flag.
0137
0138 ``char *dev`` should be the name of the device, queues is the number of queues
0139 to be created, fds is used to store and return the file descriptors (queues)
0140 created to the caller. Each file descriptor were served as the interface of a
0141 queue which could be accessed by userspace.
0142
0143 ::
0144
0145 #include <linux/if.h>
0146 #include <linux/if_tun.h>
0147
0148 int tun_alloc_mq(char *dev, int queues, int *fds)
0149 {
0150 struct ifreq ifr;
0151 int fd, err, i;
0152
0153 if (!dev)
0154 return -1;
0155
0156 memset(&ifr, 0, sizeof(ifr));
0157 /* Flags: IFF_TUN - TUN device (no Ethernet headers)
0158 * IFF_TAP - TAP device
0159 *
0160 * IFF_NO_PI - Do not provide packet information
0161 * IFF_MULTI_QUEUE - Create a queue of multiqueue device
0162 */
0163 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_MULTI_QUEUE;
0164 strcpy(ifr.ifr_name, dev);
0165
0166 for (i = 0; i < queues; i++) {
0167 if ((fd = open("/dev/net/tun", O_RDWR)) < 0)
0168 goto err;
0169 err = ioctl(fd, TUNSETIFF, (void *)&ifr);
0170 if (err) {
0171 close(fd);
0172 goto err;
0173 }
0174 fds[i] = fd;
0175 }
0176
0177 return 0;
0178 err:
0179 for (--i; i >= 0; i--)
0180 close(fds[i]);
0181 return err;
0182 }
0183
0184 A new ioctl(TUNSETQUEUE) were introduced to enable or disable a queue. When
0185 calling it with IFF_DETACH_QUEUE flag, the queue were disabled. And when
0186 calling it with IFF_ATTACH_QUEUE flag, the queue were enabled. The queue were
0187 enabled by default after it was created through TUNSETIFF.
0188
0189 fd is the file descriptor (queue) that we want to enable or disable, when
0190 enable is true we enable it, otherwise we disable it::
0191
0192 #include <linux/if.h>
0193 #include <linux/if_tun.h>
0194
0195 int tun_set_queue(int fd, int enable)
0196 {
0197 struct ifreq ifr;
0198
0199 memset(&ifr, 0, sizeof(ifr));
0200
0201 if (enable)
0202 ifr.ifr_flags = IFF_ATTACH_QUEUE;
0203 else
0204 ifr.ifr_flags = IFF_DETACH_QUEUE;
0205
0206 return ioctl(fd, TUNSETQUEUE, (void *)&ifr);
0207 }
0208
0209 Universal TUN/TAP device driver Frequently Asked Question
0210 =========================================================
0211
0212 1. What platforms are supported by TUN/TAP driver ?
0213
0214 Currently driver has been written for 3 Unices:
0215
0216 - Linux kernels 2.2.x, 2.4.x
0217 - FreeBSD 3.x, 4.x, 5.x
0218 - Solaris 2.6, 7.0, 8.0
0219
0220 2. What is TUN/TAP driver used for?
0221
0222 As mentioned above, main purpose of TUN/TAP driver is tunneling.
0223 It is used by VTun (http://vtun.sourceforge.net).
0224
0225 Another interesting application using TUN/TAP is pipsecd
0226 (http://perso.enst.fr/~beyssac/pipsec/), a userspace IPSec
0227 implementation that can use complete kernel routing (unlike FreeS/WAN).
0228
0229 3. How does Virtual network device actually work ?
0230
0231 Virtual network device can be viewed as a simple Point-to-Point or
0232 Ethernet device, which instead of receiving packets from a physical
0233 media, receives them from user space program and instead of sending
0234 packets via physical media sends them to the user space program.
0235
0236 Let's say that you configured IPv6 on the tap0, then whenever
0237 the kernel sends an IPv6 packet to tap0, it is passed to the application
0238 (VTun for example). The application encrypts, compresses and sends it to
0239 the other side over TCP or UDP. The application on the other side decompresses
0240 and decrypts the data received and writes the packet to the TAP device,
0241 the kernel handles the packet like it came from real physical device.
0242
0243 4. What is the difference between TUN driver and TAP driver?
0244
0245 TUN works with IP frames. TAP works with Ethernet frames.
0246
0247 This means that you have to read/write IP packets when you are using tun and
0248 ethernet frames when using tap.
0249
0250 5. What is the difference between BPF and TUN/TAP driver?
0251
0252 BPF is an advanced packet filter. It can be attached to existing
0253 network interface. It does not provide a virtual network interface.
0254 A TUN/TAP driver does provide a virtual network interface and it is possible
0255 to attach BPF to this interface.
0256
0257 6. Does TAP driver support kernel Ethernet bridging?
0258
0259 Yes. Linux and FreeBSD drivers support Ethernet bridging.