Back to home page

OSCL-LXR

 
 

    


0001 .. _slub:
0002 
0003 ==========================
0004 Short users guide for SLUB
0005 ==========================
0006 
0007 The basic philosophy of SLUB is very different from SLAB. SLAB
0008 requires rebuilding the kernel to activate debug options for all
0009 slab caches. SLUB always includes full debugging but it is off by default.
0010 SLUB can enable debugging only for selected slabs in order to avoid
0011 an impact on overall system performance which may make a bug more
0012 difficult to find.
0013 
0014 In order to switch debugging on one can add an option ``slub_debug``
0015 to the kernel command line. That will enable full debugging for
0016 all slabs.
0017 
0018 Typically one would then use the ``slabinfo`` command to get statistical
0019 data and perform operation on the slabs. By default ``slabinfo`` only lists
0020 slabs that have data in them. See "slabinfo -h" for more options when
0021 running the command. ``slabinfo`` can be compiled with
0022 ::
0023 
0024         gcc -o slabinfo tools/vm/slabinfo.c
0025 
0026 Some of the modes of operation of ``slabinfo`` require that slub debugging
0027 be enabled on the command line. F.e. no tracking information will be
0028 available without debugging on and validation can only partially
0029 be performed if debugging was not switched on.
0030 
0031 Some more sophisticated uses of slub_debug:
0032 -------------------------------------------
0033 
0034 Parameters may be given to ``slub_debug``. If none is specified then full
0035 debugging is enabled. Format:
0036 
0037 slub_debug=<Debug-Options>
0038         Enable options for all slabs
0039 
0040 slub_debug=<Debug-Options>,<slab name1>,<slab name2>,...
0041         Enable options only for select slabs (no spaces
0042         after a comma)
0043 
0044 Multiple blocks of options for all slabs or selected slabs can be given, with
0045 blocks of options delimited by ';'. The last of "all slabs" blocks is applied
0046 to all slabs except those that match one of the "select slabs" block. Options
0047 of the first "select slabs" blocks that matches the slab's name are applied.
0048 
0049 Possible debug options are::
0050 
0051         F               Sanity checks on (enables SLAB_DEBUG_CONSISTENCY_CHECKS
0052                         Sorry SLAB legacy issues)
0053         Z               Red zoning
0054         P               Poisoning (object and padding)
0055         U               User tracking (free and alloc)
0056         T               Trace (please only use on single slabs)
0057         A               Enable failslab filter mark for the cache
0058         O               Switch debugging off for caches that would have
0059                         caused higher minimum slab orders
0060         -               Switch all debugging off (useful if the kernel is
0061                         configured with CONFIG_SLUB_DEBUG_ON)
0062 
0063 F.e. in order to boot just with sanity checks and red zoning one would specify::
0064 
0065         slub_debug=FZ
0066 
0067 Trying to find an issue in the dentry cache? Try::
0068 
0069         slub_debug=,dentry
0070 
0071 to only enable debugging on the dentry cache.  You may use an asterisk at the
0072 end of the slab name, in order to cover all slabs with the same prefix.  For
0073 example, here's how you can poison the dentry cache as well as all kmalloc
0074 slabs::
0075 
0076         slub_debug=P,kmalloc-*,dentry
0077 
0078 Red zoning and tracking may realign the slab.  We can just apply sanity checks
0079 to the dentry cache with::
0080 
0081         slub_debug=F,dentry
0082 
0083 Debugging options may require the minimum possible slab order to increase as
0084 a result of storing the metadata (for example, caches with PAGE_SIZE object
0085 sizes).  This has a higher liklihood of resulting in slab allocation errors
0086 in low memory situations or if there's high fragmentation of memory.  To
0087 switch off debugging for such caches by default, use::
0088 
0089         slub_debug=O
0090 
0091 You can apply different options to different list of slab names, using blocks
0092 of options. This will enable red zoning for dentry and user tracking for
0093 kmalloc. All other slabs will not get any debugging enabled::
0094 
0095         slub_debug=Z,dentry;U,kmalloc-*
0096 
0097 You can also enable options (e.g. sanity checks and poisoning) for all caches
0098 except some that are deemed too performance critical and don't need to be
0099 debugged by specifying global debug options followed by a list of slab names
0100 with "-" as options::
0101 
0102         slub_debug=FZ;-,zs_handle,zspage
0103 
0104 The state of each debug option for a slab can be found in the respective files
0105 under::
0106 
0107         /sys/kernel/slab/<slab name>/
0108 
0109 If the file contains 1, the option is enabled, 0 means disabled. The debug
0110 options from the ``slub_debug`` parameter translate to the following files::
0111 
0112         F       sanity_checks
0113         Z       red_zone
0114         P       poison
0115         U       store_user
0116         T       trace
0117         A       failslab
0118 
0119 Careful with tracing: It may spew out lots of information and never stop if
0120 used on the wrong slab.
0121 
0122 Slab merging
0123 ============
0124 
0125 If no debug options are specified then SLUB may merge similar slabs together
0126 in order to reduce overhead and increase cache hotness of objects.
0127 ``slabinfo -a`` displays which slabs were merged together.
0128 
0129 Slab validation
0130 ===============
0131 
0132 SLUB can validate all object if the kernel was booted with slub_debug. In
0133 order to do so you must have the ``slabinfo`` tool. Then you can do
0134 ::
0135 
0136         slabinfo -v
0137 
0138 which will test all objects. Output will be generated to the syslog.
0139 
0140 This also works in a more limited way if boot was without slab debug.
0141 In that case ``slabinfo -v`` simply tests all reachable objects. Usually
0142 these are in the cpu slabs and the partial slabs. Full slabs are not
0143 tracked by SLUB in a non debug situation.
0144 
0145 Getting more performance
0146 ========================
0147 
0148 To some degree SLUB's performance is limited by the need to take the
0149 list_lock once in a while to deal with partial slabs. That overhead is
0150 governed by the order of the allocation for each slab. The allocations
0151 can be influenced by kernel parameters:
0152 
0153 .. slub_min_objects=x           (default 4)
0154 .. slub_min_order=x             (default 0)
0155 .. slub_max_order=x             (default 3 (PAGE_ALLOC_COSTLY_ORDER))
0156 
0157 ``slub_min_objects``
0158         allows to specify how many objects must at least fit into one
0159         slab in order for the allocation order to be acceptable.  In
0160         general slub will be able to perform this number of
0161         allocations on a slab without consulting centralized resources
0162         (list_lock) where contention may occur.
0163 
0164 ``slub_min_order``
0165         specifies a minimum order of slabs. A similar effect like
0166         ``slub_min_objects``.
0167 
0168 ``slub_max_order``
0169         specified the order at which ``slub_min_objects`` should no
0170         longer be checked. This is useful to avoid SLUB trying to
0171         generate super large order pages to fit ``slub_min_objects``
0172         of a slab cache with large object sizes into one high order
0173         page. Setting command line parameter
0174         ``debug_guardpage_minorder=N`` (N > 0), forces setting
0175         ``slub_max_order`` to 0, what cause minimum possible order of
0176         slabs allocation.
0177 
0178 SLUB Debug output
0179 =================
0180 
0181 Here is a sample of slub debug output::
0182 
0183  ====================================================================
0184  BUG kmalloc-8: Right Redzone overwritten
0185  --------------------------------------------------------------------
0186 
0187  INFO: 0xc90f6d28-0xc90f6d2b. First byte 0x00 instead of 0xcc
0188  INFO: Slab 0xc528c530 flags=0x400000c3 inuse=61 fp=0xc90f6d58
0189  INFO: Object 0xc90f6d20 @offset=3360 fp=0xc90f6d58
0190  INFO: Allocated in get_modalias+0x61/0xf5 age=53 cpu=1 pid=554
0191 
0192  Bytes b4 (0xc90f6d10): 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
0193  Object   (0xc90f6d20): 31 30 31 39 2e 30 30 35                         1019.005
0194  Redzone  (0xc90f6d28): 00 cc cc cc                                     .
0195  Padding  (0xc90f6d50): 5a 5a 5a 5a 5a 5a 5a 5a                         ZZZZZZZZ
0196 
0197    [<c010523d>] dump_trace+0x63/0x1eb
0198    [<c01053df>] show_trace_log_lvl+0x1a/0x2f
0199    [<c010601d>] show_trace+0x12/0x14
0200    [<c0106035>] dump_stack+0x16/0x18
0201    [<c017e0fa>] object_err+0x143/0x14b
0202    [<c017e2cc>] check_object+0x66/0x234
0203    [<c017eb43>] __slab_free+0x239/0x384
0204    [<c017f446>] kfree+0xa6/0xc6
0205    [<c02e2335>] get_modalias+0xb9/0xf5
0206    [<c02e23b7>] dmi_dev_uevent+0x27/0x3c
0207    [<c027866a>] dev_uevent+0x1ad/0x1da
0208    [<c0205024>] kobject_uevent_env+0x20a/0x45b
0209    [<c020527f>] kobject_uevent+0xa/0xf
0210    [<c02779f1>] store_uevent+0x4f/0x58
0211    [<c027758e>] dev_attr_store+0x29/0x2f
0212    [<c01bec4f>] sysfs_write_file+0x16e/0x19c
0213    [<c0183ba7>] vfs_write+0xd1/0x15a
0214    [<c01841d7>] sys_write+0x3d/0x72
0215    [<c0104112>] sysenter_past_esp+0x5f/0x99
0216    [<b7f7b410>] 0xb7f7b410
0217    =======================
0218 
0219  FIX kmalloc-8: Restoring Redzone 0xc90f6d28-0xc90f6d2b=0xcc
0220 
0221 If SLUB encounters a corrupted object (full detection requires the kernel
0222 to be booted with slub_debug) then the following output will be dumped
0223 into the syslog:
0224 
0225 1. Description of the problem encountered
0226 
0227    This will be a message in the system log starting with::
0228 
0229      ===============================================
0230      BUG <slab cache affected>: <What went wrong>
0231      -----------------------------------------------
0232 
0233      INFO: <corruption start>-<corruption_end> <more info>
0234      INFO: Slab <address> <slab information>
0235      INFO: Object <address> <object information>
0236      INFO: Allocated in <kernel function> age=<jiffies since alloc> cpu=<allocated by
0237         cpu> pid=<pid of the process>
0238      INFO: Freed in <kernel function> age=<jiffies since free> cpu=<freed by cpu>
0239         pid=<pid of the process>
0240 
0241    (Object allocation / free information is only available if SLAB_STORE_USER is
0242    set for the slab. slub_debug sets that option)
0243 
0244 2. The object contents if an object was involved.
0245 
0246    Various types of lines can follow the BUG SLUB line:
0247 
0248    Bytes b4 <address> : <bytes>
0249         Shows a few bytes before the object where the problem was detected.
0250         Can be useful if the corruption does not stop with the start of the
0251         object.
0252 
0253    Object <address> : <bytes>
0254         The bytes of the object. If the object is inactive then the bytes
0255         typically contain poison values. Any non-poison value shows a
0256         corruption by a write after free.
0257 
0258    Redzone <address> : <bytes>
0259         The Redzone following the object. The Redzone is used to detect
0260         writes after the object. All bytes should always have the same
0261         value. If there is any deviation then it is due to a write after
0262         the object boundary.
0263 
0264         (Redzone information is only available if SLAB_RED_ZONE is set.
0265         slub_debug sets that option)
0266 
0267    Padding <address> : <bytes>
0268         Unused data to fill up the space in order to get the next object
0269         properly aligned. In the debug case we make sure that there are
0270         at least 4 bytes of padding. This allows the detection of writes
0271         before the object.
0272 
0273 3. A stackdump
0274 
0275    The stackdump describes the location where the error was detected. The cause
0276    of the corruption is may be more likely found by looking at the function that
0277    allocated or freed the object.
0278 
0279 4. Report on how the problem was dealt with in order to ensure the continued
0280    operation of the system.
0281 
0282    These are messages in the system log beginning with::
0283 
0284         FIX <slab cache affected>: <corrective action taken>
0285 
0286    In the above sample SLUB found that the Redzone of an active object has
0287    been overwritten. Here a string of 8 characters was written into a slab that
0288    has the length of 8 characters. However, a 8 character string needs a
0289    terminating 0. That zero has overwritten the first byte of the Redzone field.
0290    After reporting the details of the issue encountered the FIX SLUB message
0291    tells us that SLUB has restored the Redzone to its proper value and then
0292    system operations continue.
0293 
0294 Emergency operations
0295 ====================
0296 
0297 Minimal debugging (sanity checks alone) can be enabled by booting with::
0298 
0299         slub_debug=F
0300 
0301 This will be generally be enough to enable the resiliency features of slub
0302 which will keep the system running even if a bad kernel component will
0303 keep corrupting objects. This may be important for production systems.
0304 Performance will be impacted by the sanity checks and there will be a
0305 continual stream of error messages to the syslog but no additional memory
0306 will be used (unlike full debugging).
0307 
0308 No guarantees. The kernel component still needs to be fixed. Performance
0309 may be optimized further by locating the slab that experiences corruption
0310 and enabling debugging only for that cache
0311 
0312 I.e.::
0313 
0314         slub_debug=F,dentry
0315 
0316 If the corruption occurs by writing after the end of the object then it
0317 may be advisable to enable a Redzone to avoid corrupting the beginning
0318 of other objects::
0319 
0320         slub_debug=FZ,dentry
0321 
0322 Extended slabinfo mode and plotting
0323 ===================================
0324 
0325 The ``slabinfo`` tool has a special 'extended' ('-X') mode that includes:
0326  - Slabcache Totals
0327  - Slabs sorted by size (up to -N <num> slabs, default 1)
0328  - Slabs sorted by loss (up to -N <num> slabs, default 1)
0329 
0330 Additionally, in this mode ``slabinfo`` does not dynamically scale
0331 sizes (G/M/K) and reports everything in bytes (this functionality is
0332 also available to other slabinfo modes via '-B' option) which makes
0333 reporting more precise and accurate. Moreover, in some sense the `-X'
0334 mode also simplifies the analysis of slabs' behaviour, because its
0335 output can be plotted using the ``slabinfo-gnuplot.sh`` script. So it
0336 pushes the analysis from looking through the numbers (tons of numbers)
0337 to something easier -- visual analysis.
0338 
0339 To generate plots:
0340 
0341 a) collect slabinfo extended records, for example::
0342 
0343         while [ 1 ]; do slabinfo -X >> FOO_STATS; sleep 1; done
0344 
0345 b) pass stats file(-s) to ``slabinfo-gnuplot.sh`` script::
0346 
0347         slabinfo-gnuplot.sh FOO_STATS [FOO_STATS2 .. FOO_STATSN]
0348 
0349    The ``slabinfo-gnuplot.sh`` script will pre-processes the collected records
0350    and generates 3 png files (and 3 pre-processing cache files) per STATS
0351    file:
0352    - Slabcache Totals: FOO_STATS-totals.png
0353    - Slabs sorted by size: FOO_STATS-slabs-by-size.png
0354    - Slabs sorted by loss: FOO_STATS-slabs-by-loss.png
0355 
0356 Another use case, when ``slabinfo-gnuplot.sh`` can be useful, is when you
0357 need to compare slabs' behaviour "prior to" and "after" some code
0358 modification.  To help you out there, ``slabinfo-gnuplot.sh`` script
0359 can 'merge' the `Slabcache Totals` sections from different
0360 measurements. To visually compare N plots:
0361 
0362 a) Collect as many STATS1, STATS2, .. STATSN files as you need::
0363 
0364         while [ 1 ]; do slabinfo -X >> STATS<X>; sleep 1; done
0365 
0366 b) Pre-process those STATS files::
0367 
0368         slabinfo-gnuplot.sh STATS1 STATS2 .. STATSN
0369 
0370 c) Execute ``slabinfo-gnuplot.sh`` in '-t' mode, passing all of the
0371    generated pre-processed \*-totals::
0372 
0373         slabinfo-gnuplot.sh -t STATS1-totals STATS2-totals .. STATSN-totals
0374 
0375    This will produce a single plot (png file).
0376 
0377    Plots, expectedly, can be large so some fluctuations or small spikes
0378    can go unnoticed. To deal with that, ``slabinfo-gnuplot.sh`` has two
0379    options to 'zoom-in'/'zoom-out':
0380 
0381    a) ``-s %d,%d`` -- overwrites the default image width and height
0382    b) ``-r %d,%d`` -- specifies a range of samples to use (for example,
0383       in ``slabinfo -X >> FOO_STATS; sleep 1;`` case, using a ``-r
0384       40,60`` range will plot only samples collected between 40th and
0385       60th seconds).
0386 
0387 
0388 DebugFS files for SLUB
0389 ======================
0390 
0391 For more information about current state of SLUB caches with the user tracking
0392 debug option enabled, debugfs files are available, typically under
0393 /sys/kernel/debug/slab/<cache>/ (created only for caches with enabled user
0394 tracking). There are 2 types of these files with the following debug
0395 information:
0396 
0397 1. alloc_traces::
0398 
0399     Prints information about unique allocation traces of the currently
0400     allocated objects. The output is sorted by frequency of each trace.
0401 
0402     Information in the output:
0403     Number of objects, allocating function, minimal/average/maximal jiffies since alloc,
0404     pid range of the allocating processes, cpu mask of allocating cpus, and stack trace.
0405 
0406     Example:::
0407 
0408     1085 populate_error_injection_list+0x97/0x110 age=166678/166680/166682 pid=1 cpus=1::
0409         __slab_alloc+0x6d/0x90
0410         kmem_cache_alloc_trace+0x2eb/0x300
0411         populate_error_injection_list+0x97/0x110
0412         init_error_injection+0x1b/0x71
0413         do_one_initcall+0x5f/0x2d0
0414         kernel_init_freeable+0x26f/0x2d7
0415         kernel_init+0xe/0x118
0416         ret_from_fork+0x22/0x30
0417 
0418 
0419 2. free_traces::
0420 
0421     Prints information about unique freeing traces of the currently allocated
0422     objects. The freeing traces thus come from the previous life-cycle of the
0423     objects and are reported as not available for objects allocated for the first
0424     time. The output is sorted by frequency of each trace.
0425 
0426     Information in the output:
0427     Number of objects, freeing function, minimal/average/maximal jiffies since free,
0428     pid range of the freeing processes, cpu mask of freeing cpus, and stack trace.
0429 
0430     Example:::
0431 
0432     1980 <not-available> age=4294912290 pid=0 cpus=0
0433     51 acpi_ut_update_ref_count+0x6a6/0x782 age=236886/237027/237772 pid=1 cpus=1
0434         kfree+0x2db/0x420
0435         acpi_ut_update_ref_count+0x6a6/0x782
0436         acpi_ut_update_object_reference+0x1ad/0x234
0437         acpi_ut_remove_reference+0x7d/0x84
0438         acpi_rs_get_prt_method_data+0x97/0xd6
0439         acpi_get_irq_routing_table+0x82/0xc4
0440         acpi_pci_irq_find_prt_entry+0x8e/0x2e0
0441         acpi_pci_irq_lookup+0x3a/0x1e0
0442         acpi_pci_irq_enable+0x77/0x240
0443         pcibios_enable_device+0x39/0x40
0444         do_pci_enable_device.part.0+0x5d/0xe0
0445         pci_enable_device_flags+0xfc/0x120
0446         pci_enable_device+0x13/0x20
0447         virtio_pci_probe+0x9e/0x170
0448         local_pci_probe+0x48/0x80
0449         pci_device_probe+0x105/0x1c0
0450 
0451 Christoph Lameter, May 30, 2007
0452 Sergey Senozhatsky, October 23, 2015