0001 Code Examples
0002 =============
0003
0004 Code Example For Symmetric Key Cipher Operation
0005 -----------------------------------------------
0006
0007 This code encrypts some data with AES-256-XTS. For sake of example,
0008 all inputs are random bytes, the encryption is done in-place, and it's
0009 assumed the code is running in a context where it can sleep.
0010
0011 ::
0012
0013 static int test_skcipher(void)
0014 {
0015 struct crypto_skcipher *tfm = NULL;
0016 struct skcipher_request *req = NULL;
0017 u8 *data = NULL;
0018 const size_t datasize = 512; /* data size in bytes */
0019 struct scatterlist sg;
0020 DECLARE_CRYPTO_WAIT(wait);
0021 u8 iv[16]; /* AES-256-XTS takes a 16-byte IV */
0022 u8 key[64]; /* AES-256-XTS takes a 64-byte key */
0023 int err;
0024
0025 /*
0026 * Allocate a tfm (a transformation object) and set the key.
0027 *
0028 * In real-world use, a tfm and key are typically used for many
0029 * encryption/decryption operations. But in this example, we'll just do a
0030 * single encryption operation with it (which is not very efficient).
0031 */
0032
0033 tfm = crypto_alloc_skcipher("xts(aes)", 0, 0);
0034 if (IS_ERR(tfm)) {
0035 pr_err("Error allocating xts(aes) handle: %ld\n", PTR_ERR(tfm));
0036 return PTR_ERR(tfm);
0037 }
0038
0039 get_random_bytes(key, sizeof(key));
0040 err = crypto_skcipher_setkey(tfm, key, sizeof(key));
0041 if (err) {
0042 pr_err("Error setting key: %d\n", err);
0043 goto out;
0044 }
0045
0046 /* Allocate a request object */
0047 req = skcipher_request_alloc(tfm, GFP_KERNEL);
0048 if (!req) {
0049 err = -ENOMEM;
0050 goto out;
0051 }
0052
0053 /* Prepare the input data */
0054 data = kmalloc(datasize, GFP_KERNEL);
0055 if (!data) {
0056 err = -ENOMEM;
0057 goto out;
0058 }
0059 get_random_bytes(data, datasize);
0060
0061 /* Initialize the IV */
0062 get_random_bytes(iv, sizeof(iv));
0063
0064 /*
0065 * Encrypt the data in-place.
0066 *
0067 * For simplicity, in this example we wait for the request to complete
0068 * before proceeding, even if the underlying implementation is asynchronous.
0069 *
0070 * To decrypt instead of encrypt, just change crypto_skcipher_encrypt() to
0071 * crypto_skcipher_decrypt().
0072 */
0073 sg_init_one(&sg, data, datasize);
0074 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
0075 CRYPTO_TFM_REQ_MAY_SLEEP,
0076 crypto_req_done, &wait);
0077 skcipher_request_set_crypt(req, &sg, &sg, datasize, iv);
0078 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
0079 if (err) {
0080 pr_err("Error encrypting data: %d\n", err);
0081 goto out;
0082 }
0083
0084 pr_debug("Encryption was successful\n");
0085 out:
0086 crypto_free_skcipher(tfm);
0087 skcipher_request_free(req);
0088 kfree(data);
0089 return err;
0090 }
0091
0092
0093 Code Example For Use of Operational State Memory With SHASH
0094 -----------------------------------------------------------
0095
0096 ::
0097
0098
0099 struct sdesc {
0100 struct shash_desc shash;
0101 char ctx[];
0102 };
0103
0104 static struct sdesc *init_sdesc(struct crypto_shash *alg)
0105 {
0106 struct sdesc *sdesc;
0107 int size;
0108
0109 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
0110 sdesc = kmalloc(size, GFP_KERNEL);
0111 if (!sdesc)
0112 return ERR_PTR(-ENOMEM);
0113 sdesc->shash.tfm = alg;
0114 return sdesc;
0115 }
0116
0117 static int calc_hash(struct crypto_shash *alg,
0118 const unsigned char *data, unsigned int datalen,
0119 unsigned char *digest)
0120 {
0121 struct sdesc *sdesc;
0122 int ret;
0123
0124 sdesc = init_sdesc(alg);
0125 if (IS_ERR(sdesc)) {
0126 pr_info("can't alloc sdesc\n");
0127 return PTR_ERR(sdesc);
0128 }
0129
0130 ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
0131 kfree(sdesc);
0132 return ret;
0133 }
0134
0135 static int test_hash(const unsigned char *data, unsigned int datalen,
0136 unsigned char *digest)
0137 {
0138 struct crypto_shash *alg;
0139 char *hash_alg_name = "sha1-padlock-nano";
0140 int ret;
0141
0142 alg = crypto_alloc_shash(hash_alg_name, 0, 0);
0143 if (IS_ERR(alg)) {
0144 pr_info("can't alloc alg %s\n", hash_alg_name);
0145 return PTR_ERR(alg);
0146 }
0147 ret = calc_hash(alg, data, datalen, digest);
0148 crypto_free_shash(alg);
0149 return ret;
0150 }
0151
0152
0153 Code Example For Random Number Generator Usage
0154 ----------------------------------------------
0155
0156 ::
0157
0158
0159 static int get_random_numbers(u8 *buf, unsigned int len)
0160 {
0161 struct crypto_rng *rng = NULL;
0162 char *drbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */
0163 int ret;
0164
0165 if (!buf || !len) {
0166 pr_debug("No output buffer provided\n");
0167 return -EINVAL;
0168 }
0169
0170 rng = crypto_alloc_rng(drbg, 0, 0);
0171 if (IS_ERR(rng)) {
0172 pr_debug("could not allocate RNG handle for %s\n", drbg);
0173 return PTR_ERR(rng);
0174 }
0175
0176 ret = crypto_rng_get_bytes(rng, buf, len);
0177 if (ret < 0)
0178 pr_debug("generation of random numbers failed\n");
0179 else if (ret == 0)
0180 pr_debug("RNG returned no data");
0181 else
0182 pr_debug("RNG returned %d bytes of data\n", ret);
0183
0184 out:
0185 crypto_free_rng(rng);
0186 return ret;
0187 }