Back to home page

OSCL-LXR

 
 

    


0001 =================================
0002 Red-black Trees (rbtree) in Linux
0003 =================================
0004 
0005 
0006 :Date: January 18, 2007
0007 :Author: Rob Landley <rob@landley.net>
0008 
0009 What are red-black trees, and what are they for?
0010 ------------------------------------------------
0011 
0012 Red-black trees are a type of self-balancing binary search tree, used for
0013 storing sortable key/value data pairs.  This differs from radix trees (which
0014 are used to efficiently store sparse arrays and thus use long integer indexes
0015 to insert/access/delete nodes) and hash tables (which are not kept sorted to
0016 be easily traversed in order, and must be tuned for a specific size and
0017 hash function where rbtrees scale gracefully storing arbitrary keys).
0018 
0019 Red-black trees are similar to AVL trees, but provide faster real-time bounded
0020 worst case performance for insertion and deletion (at most two rotations and
0021 three rotations, respectively, to balance the tree), with slightly slower
0022 (but still O(log n)) lookup time.
0023 
0024 To quote Linux Weekly News:
0025 
0026     There are a number of red-black trees in use in the kernel.
0027     The deadline and CFQ I/O schedulers employ rbtrees to
0028     track requests; the packet CD/DVD driver does the same.
0029     The high-resolution timer code uses an rbtree to organize outstanding
0030     timer requests.  The ext3 filesystem tracks directory entries in a
0031     red-black tree.  Virtual memory areas (VMAs) are tracked with red-black
0032     trees, as are epoll file descriptors, cryptographic keys, and network
0033     packets in the "hierarchical token bucket" scheduler.
0034 
0035 This document covers use of the Linux rbtree implementation.  For more
0036 information on the nature and implementation of Red Black Trees,  see:
0037 
0038   Linux Weekly News article on red-black trees
0039     https://lwn.net/Articles/184495/
0040 
0041   Wikipedia entry on red-black trees
0042     https://en.wikipedia.org/wiki/Red-black_tree
0043 
0044 Linux implementation of red-black trees
0045 ---------------------------------------
0046 
0047 Linux's rbtree implementation lives in the file "lib/rbtree.c".  To use it,
0048 "#include <linux/rbtree.h>".
0049 
0050 The Linux rbtree implementation is optimized for speed, and thus has one
0051 less layer of indirection (and better cache locality) than more traditional
0052 tree implementations.  Instead of using pointers to separate rb_node and data
0053 structures, each instance of struct rb_node is embedded in the data structure
0054 it organizes.  And instead of using a comparison callback function pointer,
0055 users are expected to write their own tree search and insert functions
0056 which call the provided rbtree functions.  Locking is also left up to the
0057 user of the rbtree code.
0058 
0059 Creating a new rbtree
0060 ---------------------
0061 
0062 Data nodes in an rbtree tree are structures containing a struct rb_node member::
0063 
0064   struct mytype {
0065         struct rb_node node;
0066         char *keystring;
0067   };
0068 
0069 When dealing with a pointer to the embedded struct rb_node, the containing data
0070 structure may be accessed with the standard container_of() macro.  In addition,
0071 individual members may be accessed directly via rb_entry(node, type, member).
0072 
0073 At the root of each rbtree is an rb_root structure, which is initialized to be
0074 empty via:
0075 
0076   struct rb_root mytree = RB_ROOT;
0077 
0078 Searching for a value in an rbtree
0079 ----------------------------------
0080 
0081 Writing a search function for your tree is fairly straightforward: start at the
0082 root, compare each value, and follow the left or right branch as necessary.
0083 
0084 Example::
0085 
0086   struct mytype *my_search(struct rb_root *root, char *string)
0087   {
0088         struct rb_node *node = root->rb_node;
0089 
0090         while (node) {
0091                 struct mytype *data = container_of(node, struct mytype, node);
0092                 int result;
0093 
0094                 result = strcmp(string, data->keystring);
0095 
0096                 if (result < 0)
0097                         node = node->rb_left;
0098                 else if (result > 0)
0099                         node = node->rb_right;
0100                 else
0101                         return data;
0102         }
0103         return NULL;
0104   }
0105 
0106 Inserting data into an rbtree
0107 -----------------------------
0108 
0109 Inserting data in the tree involves first searching for the place to insert the
0110 new node, then inserting the node and rebalancing ("recoloring") the tree.
0111 
0112 The search for insertion differs from the previous search by finding the
0113 location of the pointer on which to graft the new node.  The new node also
0114 needs a link to its parent node for rebalancing purposes.
0115 
0116 Example::
0117 
0118   int my_insert(struct rb_root *root, struct mytype *data)
0119   {
0120         struct rb_node **new = &(root->rb_node), *parent = NULL;
0121 
0122         /* Figure out where to put new node */
0123         while (*new) {
0124                 struct mytype *this = container_of(*new, struct mytype, node);
0125                 int result = strcmp(data->keystring, this->keystring);
0126 
0127                 parent = *new;
0128                 if (result < 0)
0129                         new = &((*new)->rb_left);
0130                 else if (result > 0)
0131                         new = &((*new)->rb_right);
0132                 else
0133                         return FALSE;
0134         }
0135 
0136         /* Add new node and rebalance tree. */
0137         rb_link_node(&data->node, parent, new);
0138         rb_insert_color(&data->node, root);
0139 
0140         return TRUE;
0141   }
0142 
0143 Removing or replacing existing data in an rbtree
0144 ------------------------------------------------
0145 
0146 To remove an existing node from a tree, call::
0147 
0148   void rb_erase(struct rb_node *victim, struct rb_root *tree);
0149 
0150 Example::
0151 
0152   struct mytype *data = mysearch(&mytree, "walrus");
0153 
0154   if (data) {
0155         rb_erase(&data->node, &mytree);
0156         myfree(data);
0157   }
0158 
0159 To replace an existing node in a tree with a new one with the same key, call::
0160 
0161   void rb_replace_node(struct rb_node *old, struct rb_node *new,
0162                         struct rb_root *tree);
0163 
0164 Replacing a node this way does not re-sort the tree: If the new node doesn't
0165 have the same key as the old node, the rbtree will probably become corrupted.
0166 
0167 Iterating through the elements stored in an rbtree (in sort order)
0168 ------------------------------------------------------------------
0169 
0170 Four functions are provided for iterating through an rbtree's contents in
0171 sorted order.  These work on arbitrary trees, and should not need to be
0172 modified or wrapped (except for locking purposes)::
0173 
0174   struct rb_node *rb_first(struct rb_root *tree);
0175   struct rb_node *rb_last(struct rb_root *tree);
0176   struct rb_node *rb_next(struct rb_node *node);
0177   struct rb_node *rb_prev(struct rb_node *node);
0178 
0179 To start iterating, call rb_first() or rb_last() with a pointer to the root
0180 of the tree, which will return a pointer to the node structure contained in
0181 the first or last element in the tree.  To continue, fetch the next or previous
0182 node by calling rb_next() or rb_prev() on the current node.  This will return
0183 NULL when there are no more nodes left.
0184 
0185 The iterator functions return a pointer to the embedded struct rb_node, from
0186 which the containing data structure may be accessed with the container_of()
0187 macro, and individual members may be accessed directly via
0188 rb_entry(node, type, member).
0189 
0190 Example::
0191 
0192   struct rb_node *node;
0193   for (node = rb_first(&mytree); node; node = rb_next(node))
0194         printk("key=%s\n", rb_entry(node, struct mytype, node)->keystring);
0195 
0196 Cached rbtrees
0197 --------------
0198 
0199 Computing the leftmost (smallest) node is quite a common task for binary
0200 search trees, such as for traversals or users relying on a the particular
0201 order for their own logic. To this end, users can use 'struct rb_root_cached'
0202 to optimize O(logN) rb_first() calls to a simple pointer fetch avoiding
0203 potentially expensive tree iterations. This is done at negligible runtime
0204 overhead for maintenance; albeit larger memory footprint.
0205 
0206 Similar to the rb_root structure, cached rbtrees are initialized to be
0207 empty via::
0208 
0209   struct rb_root_cached mytree = RB_ROOT_CACHED;
0210 
0211 Cached rbtree is simply a regular rb_root with an extra pointer to cache the
0212 leftmost node. This allows rb_root_cached to exist wherever rb_root does,
0213 which permits augmented trees to be supported as well as only a few extra
0214 interfaces::
0215 
0216   struct rb_node *rb_first_cached(struct rb_root_cached *tree);
0217   void rb_insert_color_cached(struct rb_node *, struct rb_root_cached *, bool);
0218   void rb_erase_cached(struct rb_node *node, struct rb_root_cached *);
0219 
0220 Both insert and erase calls have their respective counterpart of augmented
0221 trees::
0222 
0223   void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *,
0224                                   bool, struct rb_augment_callbacks *);
0225   void rb_erase_augmented_cached(struct rb_node *, struct rb_root_cached *,
0226                                  struct rb_augment_callbacks *);
0227 
0228 
0229 Support for Augmented rbtrees
0230 -----------------------------
0231 
0232 Augmented rbtree is an rbtree with "some" additional data stored in
0233 each node, where the additional data for node N must be a function of
0234 the contents of all nodes in the subtree rooted at N. This data can
0235 be used to augment some new functionality to rbtree. Augmented rbtree
0236 is an optional feature built on top of basic rbtree infrastructure.
0237 An rbtree user who wants this feature will have to call the augmentation
0238 functions with the user provided augmentation callback when inserting
0239 and erasing nodes.
0240 
0241 C files implementing augmented rbtree manipulation must include
0242 <linux/rbtree_augmented.h> instead of <linux/rbtree.h>. Note that
0243 linux/rbtree_augmented.h exposes some rbtree implementations details
0244 you are not expected to rely on; please stick to the documented APIs
0245 there and do not include <linux/rbtree_augmented.h> from header files
0246 either so as to minimize chances of your users accidentally relying on
0247 such implementation details.
0248 
0249 On insertion, the user must update the augmented information on the path
0250 leading to the inserted node, then call rb_link_node() as usual and
0251 rb_augment_inserted() instead of the usual rb_insert_color() call.
0252 If rb_augment_inserted() rebalances the rbtree, it will callback into
0253 a user provided function to update the augmented information on the
0254 affected subtrees.
0255 
0256 When erasing a node, the user must call rb_erase_augmented() instead of
0257 rb_erase(). rb_erase_augmented() calls back into user provided functions
0258 to updated the augmented information on affected subtrees.
0259 
0260 In both cases, the callbacks are provided through struct rb_augment_callbacks.
0261 3 callbacks must be defined:
0262 
0263 - A propagation callback, which updates the augmented value for a given
0264   node and its ancestors, up to a given stop point (or NULL to update
0265   all the way to the root).
0266 
0267 - A copy callback, which copies the augmented value for a given subtree
0268   to a newly assigned subtree root.
0269 
0270 - A tree rotation callback, which copies the augmented value for a given
0271   subtree to a newly assigned subtree root AND recomputes the augmented
0272   information for the former subtree root.
0273 
0274 The compiled code for rb_erase_augmented() may inline the propagation and
0275 copy callbacks, which results in a large function, so each augmented rbtree
0276 user should have a single rb_erase_augmented() call site in order to limit
0277 compiled code size.
0278 
0279 
0280 Sample usage
0281 ^^^^^^^^^^^^
0282 
0283 Interval tree is an example of augmented rb tree. Reference -
0284 "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein.
0285 More details about interval trees:
0286 
0287 Classical rbtree has a single key and it cannot be directly used to store
0288 interval ranges like [lo:hi] and do a quick lookup for any overlap with a new
0289 lo:hi or to find whether there is an exact match for a new lo:hi.
0290 
0291 However, rbtree can be augmented to store such interval ranges in a structured
0292 way making it possible to do efficient lookup and exact match.
0293 
0294 This "extra information" stored in each node is the maximum hi
0295 (max_hi) value among all the nodes that are its descendants. This
0296 information can be maintained at each node just be looking at the node
0297 and its immediate children. And this will be used in O(log n) lookup
0298 for lowest match (lowest start address among all possible matches)
0299 with something like::
0300 
0301   struct interval_tree_node *
0302   interval_tree_first_match(struct rb_root *root,
0303                             unsigned long start, unsigned long last)
0304   {
0305         struct interval_tree_node *node;
0306 
0307         if (!root->rb_node)
0308                 return NULL;
0309         node = rb_entry(root->rb_node, struct interval_tree_node, rb);
0310 
0311         while (true) {
0312                 if (node->rb.rb_left) {
0313                         struct interval_tree_node *left =
0314                                 rb_entry(node->rb.rb_left,
0315                                          struct interval_tree_node, rb);
0316                         if (left->__subtree_last >= start) {
0317                                 /*
0318                                  * Some nodes in left subtree satisfy Cond2.
0319                                  * Iterate to find the leftmost such node N.
0320                                  * If it also satisfies Cond1, that's the match
0321                                  * we are looking for. Otherwise, there is no
0322                                  * matching interval as nodes to the right of N
0323                                  * can't satisfy Cond1 either.
0324                                  */
0325                                 node = left;
0326                                 continue;
0327                         }
0328                 }
0329                 if (node->start <= last) {              /* Cond1 */
0330                         if (node->last >= start)        /* Cond2 */
0331                                 return node;    /* node is leftmost match */
0332                         if (node->rb.rb_right) {
0333                                 node = rb_entry(node->rb.rb_right,
0334                                         struct interval_tree_node, rb);
0335                                 if (node->__subtree_last >= start)
0336                                         continue;
0337                         }
0338                 }
0339                 return NULL;    /* No match */
0340         }
0341   }
0342 
0343 Insertion/removal are defined using the following augmented callbacks::
0344 
0345   static inline unsigned long
0346   compute_subtree_last(struct interval_tree_node *node)
0347   {
0348         unsigned long max = node->last, subtree_last;
0349         if (node->rb.rb_left) {
0350                 subtree_last = rb_entry(node->rb.rb_left,
0351                         struct interval_tree_node, rb)->__subtree_last;
0352                 if (max < subtree_last)
0353                         max = subtree_last;
0354         }
0355         if (node->rb.rb_right) {
0356                 subtree_last = rb_entry(node->rb.rb_right,
0357                         struct interval_tree_node, rb)->__subtree_last;
0358                 if (max < subtree_last)
0359                         max = subtree_last;
0360         }
0361         return max;
0362   }
0363 
0364   static void augment_propagate(struct rb_node *rb, struct rb_node *stop)
0365   {
0366         while (rb != stop) {
0367                 struct interval_tree_node *node =
0368                         rb_entry(rb, struct interval_tree_node, rb);
0369                 unsigned long subtree_last = compute_subtree_last(node);
0370                 if (node->__subtree_last == subtree_last)
0371                         break;
0372                 node->__subtree_last = subtree_last;
0373                 rb = rb_parent(&node->rb);
0374         }
0375   }
0376 
0377   static void augment_copy(struct rb_node *rb_old, struct rb_node *rb_new)
0378   {
0379         struct interval_tree_node *old =
0380                 rb_entry(rb_old, struct interval_tree_node, rb);
0381         struct interval_tree_node *new =
0382                 rb_entry(rb_new, struct interval_tree_node, rb);
0383 
0384         new->__subtree_last = old->__subtree_last;
0385   }
0386 
0387   static void augment_rotate(struct rb_node *rb_old, struct rb_node *rb_new)
0388   {
0389         struct interval_tree_node *old =
0390                 rb_entry(rb_old, struct interval_tree_node, rb);
0391         struct interval_tree_node *new =
0392                 rb_entry(rb_new, struct interval_tree_node, rb);
0393 
0394         new->__subtree_last = old->__subtree_last;
0395         old->__subtree_last = compute_subtree_last(old);
0396   }
0397 
0398   static const struct rb_augment_callbacks augment_callbacks = {
0399         augment_propagate, augment_copy, augment_rotate
0400   };
0401 
0402   void interval_tree_insert(struct interval_tree_node *node,
0403                             struct rb_root *root)
0404   {
0405         struct rb_node **link = &root->rb_node, *rb_parent = NULL;
0406         unsigned long start = node->start, last = node->last;
0407         struct interval_tree_node *parent;
0408 
0409         while (*link) {
0410                 rb_parent = *link;
0411                 parent = rb_entry(rb_parent, struct interval_tree_node, rb);
0412                 if (parent->__subtree_last < last)
0413                         parent->__subtree_last = last;
0414                 if (start < parent->start)
0415                         link = &parent->rb.rb_left;
0416                 else
0417                         link = &parent->rb.rb_right;
0418         }
0419 
0420         node->__subtree_last = last;
0421         rb_link_node(&node->rb, rb_parent, link);
0422         rb_insert_augmented(&node->rb, root, &augment_callbacks);
0423   }
0424 
0425   void interval_tree_remove(struct interval_tree_node *node,
0426                             struct rb_root *root)
0427   {
0428         rb_erase_augmented(&node->rb, root, &augment_callbacks);
0429   }